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Abstract

This paper aims to solve two fundamental problems on finite or infinite horizon
dynamic games with complete information. Under some mild conditions, we
prove the existence of subgame-perfect equilibria and the upper hemicontinuity of
equilibrium payoffs in general dynamic games with simultaneous moves (i.e., almost
perfect information), which go beyond previous works in the sense that stagewise
public randomization and the continuity requirement on the state variables are
not needed. For alternating move (i.e., perfect-information) dynamic games with
uncertainty, we show the existence of pure-strategy subgame-perfect equilibria as
well as the upper hemicontinuity of equilibrium payoffs, extending the earlier

results on perfect-information deterministic dynamic games.
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1 Introduction

Dynamic games with complete information, where players observe the history and
move simultaneously or alternately in finite or infinite horizon, arise naturally in
many situations. As noted in Chapter 4 of Fudenberg and Tirole (1991) and
Harris, Reny and Robson (1995), these games form a general class of regular
dynamic games with many applications in economics, political science, and biology.
The associated notion of subgame-perfect equilibrium is a fundamental game-
theoretic concept. For alternating move games with finite actions, an early result
on backward induction (subgame-perfect equilibrium) was presented in Zermelo
(1913). For simultaneous move games with finitely many actions and stages, the
existence of subgame-perfect equilibria was shown in Selten (1965) while the infinite
horizon but finite-action case was covered by Fudenberg and Levine (1983) under
the usual continuity at infinity condition.

Since the agents in many economic models need to make continuous choices,
it is important to consider dynamic games with general action spaces. However, a
simple example without any subgame-perfect equilibrium was presented in Harris,
Reny and Robson (1995), where the game has two players in each of the two
stages with only one player having a continuous choice set.? Thus, the existence
of subgame-perfect equilibria under some suitable conditions remains an open
problem even for two-stage dynamic games. The purpose of this paper is to
prove the existence of subgame-perfect equilibria for general dynamic games with
simultaneous or alternating moves in finite or infinite horizon under some suitable
conditions. We shall adopt the general forms of intertemporal utilities, requiring
neither stationarity nor additive separability.?

For deterministic games with perfect information (i.e., the players move
alternately), the existence of pure-strategy subgame-perfect equilibria was shown
in Borgers (1989, 1991), Fudenberg and Levine (1983), Harris (1985), Hellwig
and Leininger (1987), and Hellwig et al. (1990) with the model parameters being
continuous in actions, extending the early work of Zermelo (1913).* However, if the

“deterministic” assumption is dropped by introducing a passive player - Nature,

"'Without the continuity at infinity condition, subgame-perfect equilibria may not exist in infinite-
horizon dynamic games with finitely many actions, see Solan and Vieille (2003) for a counterexample.

2As noted in Section 2 of Harris, Reny and Robson (1995), such a dynamic game with continuous
choices provides a minimal nontrivial counterexample; see also Exercise 13.4 in Fudenberg and Tirole
(1991) for another counterexample of Harris.

3To be specific, we assume that players’s payoffs are functions of the whole histories endowed with
the product topology, which does not need to be the discounted summation of the stage payoffs. For
details, see Section 2.

4Alés-Ferrer and Ritzberger (2016) considered an alternative formulation of dynamic games with
perfect information and without Nature, and showed the existence of subgame-perfect equilibrium.



then a pure-strategy subgame-perfect equilibrium need not exist as shown by a
four-stage game in Harris, Reny and Robson (1995). In fact, the nonexistence of a
mixed-strategy subgame-perfect equilibrium in a five-stage alternating move game
was provided by Luttmer and Mariotti (2003).° Thus, it is still an open problem
to show the existence of (pure or mixed strategy) subgame-perfect equilibria in
(finite or infinite horizon) perfect-information dynamic games with uncertainty
under some general conditions.

Continuous dynamic games with almost perfect information in the sense
that the players move simultaneously have been considered in Harris, Reny and
Robson (1995). In such games, there are a finite number of active players and
a passive player (Nature), and all the relevant model parameters are assumed to
be continuous in both action and state variables (i.e., Nature’s moves). It was
shown in Harris, Reny and Robson (1995) that subgame-perfect equilibria exist in
those extended games obtained from the original games by introducing stagewise
public randomization as a correlation device. As mentioned above, they also
demonstrated the possible nonexistence of subgame-perfect equilibrium through a
simple example.

The first aim of this paper is to resolve the above two open problems (in
both finite and infinite horizon) for the class of continuous dynamic games. We
assume the state transition in each period (except for those periods with one
active player) to be an atomless probability measure for any given history.” In
Theorems 1 and 2 (and Proposition 1), we present the existence results for
subgame-perfect equilibria, and also some regularity properties of the equilibrium
payoff correspondences, including compactness and upper hemicontinuity.® Note
that our model allows the state history to fully influence all the model parameters,
and hence covers the case with stagewise public randomization in the sense that the
state transition has an additional atomless component that is independently and
identically distributed across time, and does not enter the payoffs, state transitions
and action correspondences. As a result, we obtain the existence result in Harris,
Reny and Robson (1995) as a special case. In addition, we also provide a new

existence result for continuous stochastic games in Proposition 2; see Remark 3 for

5All those counterexamples show that various issues arise when one considers general dynamic games;
see, for example, the discussions in Stinchcombe (2005). In the setting with incomplete information,
even the equilibrium notion needs to be carefully treated; see Myerson and Reny (2018).

6See also Mariotti (2000) and Reny and Robson (2002).

"A probability measure on a separable metric space is atomless if every single point has measure
zZero.

8Such an upper hemicontinuity property in terms of correspondences of equilibrium payoffs, or
outcomes, or correlated strategies has been the key for proving the relevant existence results in Borgers
(1989, 1991), Harris (1985), Harris, Reny and Robson (1995), Hellwig and Leininger (1987), Hellwig et
al. (1990), and Mariotti (2000).



discussions.

For dynamic games with almost perfect information, our results allow the
players to take mixed strategies. However, for the special class of continuous
dynamic games with perfect information,” we obtain the existence of pure-strategy
subgame-perfect equilibria in Theorem 2. When Nature is present, there has
been no general result on the existence of equilibria (even in mixed strategies)
for continuous dynamic games with perfect information. Our Theorem 2 provides
a new existence result in pure strategy, which extends the results of Borgers (1989),
Fudenberg and Levine (1983), Harris (1985), Hellwig and Leininger (1987), Hellwig
et al. (1990), and Zermelo (1913) to the case when Nature is present.

The condition of atomless transitions is minimal in the particular sense that the
existence results for continuous dynamic games may fail to hold if (1) the passive
player, Nature, is not present in the model as shown in Harris, Reny and Robson
(1995), or (2) with the presence of Nature, the state transition is not atomless even
at one point of history as shown in Luttmer and Mariotti (2003).

The second aim of this paper is to consider an important extension in which the
relevant model parameters are assumed to be continuous in actions, but measurable
in states.!? In particular, we show the existence of a subgame-perfect equilibrium
in a general dynamic game with almost perfect information under some suitable
conditions on the state transitions. Theorems 3 and 4 below go beyond our results
on continuous dynamic games by dropping the continuity requirement on the state
variables.'’ We work with the condition that the state transition in each period
(except for those periods with one active player) have a component with a suitable
density function with respect to some atomless reference measure.

In Appendix A, we provide a complete proof of Theorem 1, and point out
those changes that are needed for proving Theorem 2 and Proposition 1. We
follow the standard three-step procedure in obtaining subgame-perfect equilibria

of dynamic games, namely, backward induction, forward induction, and approxi-

9Dynamic games with perfect information also have wide applications. For example, see Amir (1996)
and Phelps and Pollak (1968) for an intergenerational bequest game, and Goldman (1980) and Peleg
and Yaari (1973) for intrapersonal games in which consumers have changing preferences.

10Gince the agents need to make optimal choices, the continuity assumption in terms of actions
is natural and widely adopted. However, the state variable is not a choice variable, and thus it
is unnecessary to impose the state continuity requirement in a general model. Note that the state
measurability assumption is the minimal regularity condition one would expect for the model parameters.
We may also point out that the proof for the case with state continuity in Appendix A is much simpler
than the proof for the general case in Appendix B. For discussions on subgame perfect e-equilibria in
dynamic games without the continuity conditions in actions, see Solan and Vieille (2003), Flesch et
al. (2010), Laraki, Maitra and Sudderth (2013), Flesch and Predtetchinski (2016), and the references
therein.

"In Appendix B, we also present a new existence results on subgame-perfect equilibria for a general
stochastic game.



mation of infinite horizon by finite horizon. Because we drop the stagewise public
randomization, new technical difficulties arise in the proofs. The main purpose
of the step of backward induction is to show that if the payoff correspondence at
a given stage satisfies certain regularity properties, then the equilibrium payoff
correspondence at the previous stage is upper hemicontinuous. We notice that the
condition of atomless transitions suffices for this purpose, and hence the exogenous
stagewise public randomization is not needed for this step. For the step of forward
induction, we need to obtain strategies that are jointly measurable in history. When
there is a public randomization device, the joint measurability follows from the
measurable version of Skorokhod’s representation theorem and implicit function
theorem respectively as in Harris, Reny and Robson (1995) and Reny and Robson
(2002). Here we need to work with the deep “measurable” measurable choice
theorem of Mertens (2003).

In Appendix B, we prove Theorem 3 first, and then describe the needed
changes for proving Theorem 4 and Proposition B.1. The proofs for the results
in measurable dynamic games are much more difficult than those in the case of
continuous dynamic games. In the step of backward induction, we obtain a new
existence result for discontinuous games with stochastic endogenous sharing rules,
which extends the main result of Simon and Zame (1990) by allowing the payoff
correspondence to be measurable (instead of upper hemicontinuous) in states.!? In
order to extend the results to the infinite horizon setting, we need to handle various
subtle measurability issues due to the lack of continuity in the state variables in
the more general model, which is the most difficult part of the proof for Theorem
3.13

The rest of the paper is organized as follows. The model is presented in Section
2. In Section 3, we provide a variation of the counterexample in Luttmer and
Mariotti (2003) to demonstrate the key issues. The results for continuous dynamic
games are given in Section 4. Section 5 extends continuous dynamic games to
the setting in which the model parameters may only be measurable in the state
variables. The proofs for the results of continuous dynamic games and measurable

dynamic games are left in Appendices A and B, respectively.

12Tn Simon and Zame (1990), the payoff is assumed to be a correspondence that is bounded, upper
hemicontinuous, with nonempty, convex, and compact values. Note that the upper hemicontinuity
condition on a correspondence is equivalent to the fact that the lower inverse of any closed set is closed;
see Aliprantis and Border (2006, Lemma 17.4). On the other hand, the measurability condition on a
correspondence means that the lower inverse of any closed set is measurable (see Section 6.1). Thus, an
upper hemicontinuous correspondence is automatically measurable. For more discussions of the approach
in Simon and Zame (1990), see Harris, Stinchcombe and Zame (2005) and Stinchcombe (2005).

13Because our relevant model parameters are only measurable in the state variables, the usual method
of approximating a limit continuous dynamic game by a sequence of finite games, as used in Borgers
(1991), Harris, Reny and Robson (1995) and Hellwig et al. (1990), is not applicable in this setting.



2 Model

In this section, we shall present the model for an infinite-horizon dynamic game
with almost perfect information.

The set of players is Iy = {0,1,...,n}, where the players in I = {1,...,n}
are active and player 0 is Nature. All the players move simultaneously. Time is
discrete, and indexed by t =0,1,2,....

The set of starting points is a product space Hy = Xy x Sy, where X is a
compact metric space and Sy is a Polish space (i.e., a complete separable metric
space).'* At stage t > 1, player i’s action will be chosen from a subset of a Polish
space Xy; for each i € I, and Xy = Hz‘e] Xi;. Nature’s action is chosen from a
Polish space S¢. Let X' = [[y<j<; Xk and S* = [To<y<; Sk. The Borel o-algebras
on X; and S; are denoted by B?)Et) and B(S}), respe;tfvely. Given ¢ > 0, a history

up to the stage t is a vector'®
hy = (0, 80, T1, 81, - - -, g, 5¢) € X' x St

The set of all such possible histories is denoted by H;. For any t > 0, H; C X x S°.

Forany ¢t > 1 and i € I, let A;; be a measurable, nonempty and compact valued
correspondence!® from H; 1 to Xy; such that Ay (h;_1) is the set of available actions
for player i € I given the history h; 1. Let Ay = [[;c; Asi. Then Hy = Gr(Ay) x S,
where Gr(A;) is the graph of A;.

For any = = (z9,1,...) € X, let 2! = (x¢,...,7;) € X* be the truncation of
x up to the period t. Truncations for s € S can be defined similarly. Let H,
be the subset of X x S such that (x,s) € Hy if (2!, s') € H; for any t > 0.
Then H is the set of all possible histories in the game.'” Hereafter, let Hoo be
endowed with the product topology. For any ¢t > 1, Nature’s action is given by
a Borel measurable mapping fio from the history H;—; to M(S;), where M(S;)
denotes the set of all Borel probability measures on S; and is endowed with the
topology of weak convergence of measures on S;.

For each i € I, the payoff function u; is a bounded Borel measurable mapping

from Ho to Ryi. Without loss of generality, we can assume that the payoff

14Tn each stage t > 1, there will be a set of action profiles X; and a set of states S;. Without loss of
generality, we assume that the set of initial points is also a product space for notational consistency.

5By abusing the notation, we also view h; = (zo,50,21,51,...,%¢,5;) as the vector
(X0, T1,y - -+, T4, S0, 81,---,5¢) in Xt x St

16Suppose that Y and Z are both Polish spaces, and W is a correspondence from Y to Z. Hereafter, the
measurability of ¥, unless specifically indicated, is assumed to be the weak measurability with respect
to the Borel o-algebra B(Y') on Y. For the definitions and detailed discussions, see Section 6.1.

I7A finite horizon dynamic game can be regarded as a special case of an infinite horizon dynamic
game in the sense that the action correspondence A;; is point-valued for each player i € I and t > T for
some stage T > 1; see, for example, Borgers (1989) and Harris, Reny and Robson (1995).



function w; is bounded from above by some vy > 0 for each ¢ € I.

For player i € I, a strategy f; is a sequence {f;}+>1 such that fi; is a Borel
measurable mapping from H;_1 to M(Xy) with fi;(Agi(hi—1)|hi—1) = 1 for all
hi—1 € H;_1. That is, player ¢ can only take the mixed strategy concentrated on
the available set of actions Ay;(hi—1) given the history h;—1. A strategy profile
f ={fi}ier is a combination of strategies of all active players.

In any subgame, a strategy combination will generate a probability distribution
over the set of possible histories. This probability distribution is called the path
induced by the strategy combination in this subgame. Before describing how
a strategy combination induces a path in Definition 1, we need to define some
technical terms. Given a strategy profile f = {f;}ics, denote ®ier, f(r41)i as a
transition probability from the set of histories Hy to M(Xy1). For the notational
simplicity later on, we assume that @;er, f(y/41)i(-| 1) represents the strategy profile
in stage t' + 1 for a given history hy € Hy, where ®;e, f, (t'+1)i(-|h¢) is the product
of the probability measures f(yy1)i(:|he), i € Ip. If X is a finite measure on X
and v is a transition probability from X to Y, then A o v is a measure on X X Y
such that Ao v(A x B) = [, v(B|z)A\(dz) for any measurable subsets A C X and
BCY.

Definition 1. Suppose that a strategy profile f = {fi}ier and a history hy € H; are
given for somet > 0. Let 1 = 0p,,, where 0y, is the probability measure concentrated
at the point hy. If 7 € M(Hy) has already been defined for some t' > t, then let

Terp1 = T O (il fr41))-

Finally, let 7 € M(Hy) be the unique probability measure on Hoo such that
MargHt/T = 1y for all ' > t. Then 7 is called the path induced by f in the
subgame hy. For alli € I, fHoo u; d7 1s the payoff of player i in this subgame.

3 An example

As mentioned in the introduction, Luttmer and Mariotti (2003) presented a simple
five-stage alternating move game which does not possess any subgame-perfect
equilibrium. Below, we shall modify their counterexample to illustrate what could
go wrong in a continuous dynamic game, and use this example to demonstrate
some key issues.

Fix 0 < e < 1. The game G, proceeds in five stages.
e In stage 1, player 1 chooses an action a; € [0, 1].

e In stage 2, player 2 chooses an action ag € [0, 1].



e In stage 3, Nature chooses some = € [-2 — €+ aj + az,2 + € — a; — ag] based

€

on the uniform distribution Mayaz)"

e After Nature’s choice, players 3 and 4 move sequentially. The subgame
following a history (a1, a2,x) and the associated payoffs for all four active

players are shown in Figure 1, where

x+e ifz<—e
Y(x,e) =S x—e ifx>e

0, T € [—€, €.

(20,1, as, 2, 0)

(a‘h 20’2’ 17 1)

Figure 1: The subgame (ay, as, x).

In the following, let @ and 5 be the probabilities with which players 3 and 4
choose U and u, respectively. Consider a subgame (aj,ag,z). Let Pg(al,ag,x)
(resp. Ps(a1,a2)) be the set of expected payoffs for players 1 and 2 in stage 3
(resp. stage 2).1%

o If z < —e¢, then the equilibrium continuation path is (U,u) (i.e., « = 1 and

B=1), and P§(a1,as,z) = {(2a1, a2)}.

e If z > ¢, then the equilibrium continuation path is D (i.e., « = 0 and § = 0),

and P§(ay, a2, ) = {(a1,2a2)}.

o If x € [—¢, €], then the set of equilibrium continuation paths is characterized

by three segments of mixing probabilities: o = 0 and 3 € [0,1]; a € [0, 1]

and 8= 3; and o =1 and 8 € [3,1]. Then

P(ar,02,2) = {(a1, (2 — Se)aa)lo € [0,1]} U {215, 02818 € [5,1]},

which is not convex when a; > 0 and a9 > 0.

8For simplicity, we focus on the equilibrium payoffs of players 1 and 2.

9



Denote D = {(a1, (2— 3a)as)|a € [0,1]} U{(2a18,a28)|B € [3,1]}, and Co(D)
as the convex hull of the set D. Below, for a; > 0 and as > 0, D is the union of
the two segments in Figure 2, and Co(D) is the dashed area with boundaries in

Figure 3.

Player 2’s payoff
Player 2’s payoff

a1 2a; Player 1’s payoff a1 2a; Player 1’s payoff

Figure 2: D Figure 3: Co(D)

Fix any € > 0. Nature’s move x is uniformly distributed on the nondegenerate
interval [-2 — € + a1 + a2,2 + € — a1 — ag|, which is symmetric around zero for
any (a1,az). The correspondence P5(ay,az,z) is upper hemicontinuous, but is not
convex valued when x € [—¢, €] and aj,a2 > 0 (the set D is not convex in this
case). Given any (aj,as), the set of expected equilibrium continuation payoffs for

players 1 and 2 is:'?

~ 3 ~
P3(a1,a2) = /3Pg(al’a%x)nfahaz)(dfp)

= [ P an e @)+ [ Filaran )i, (40

3
+ / P?f(al? a27‘r)7]5a17a2)(dx)

€ 2 — a1 — ay 3 3
- " Co(D)+ =" "2 (242
2_1_6_6“_(1200( )+2+e—a1—a2 {(2a1,2a2)}
=/, Co(Ps (a1, a2, ©))nfy, op(dz) + [ Co(P5(a1, az, 2))nl,, 4, (dz)

3 -
_|_/ Co(P?f(al,G2a$))77€a1,a2)(dx)

3 ~
= /3Co(P§(a1,ag,m))nfahaz)(dx).

For € [-2 — ¢ 4+ aj + ag, —€) or (6,2 + € — a; — ag], P§(a1,az,x) is a singleton,
and hence is convex valued and coincides with CO(P§ (a1,a2,7)). For x € [—¢,€],

P5(ay, ag, x) is the set D. Its integration on [—¢, €] under the uniform distribution

Y Given two sets Dy, Dy C R, Di4+Dy = {di+dz2: d; € D;,i =1,2}; forc € R, e¢Dy = {cdy: di € D1}

10



is simply Co(D), and hence coincides with Co(P§(a1, a2, )). It is also clear that
Ps(ay,az) is upper hemicontinuous in (a1, az) € [0,1] x [0,1].

There are two general observations: (1) the integral of a correspondence
coincides with the integral of the convex hull of the correspondence based on
an atomless measure, and (2) the integral of a convex valued, upper hemi-
continuous correspondence based on a continuous transition probability is still
upper hemicontinuous.?’ As a result, the integral of an upper hemicontinuous
correspondence is still upper hemicontinuous and convex valued based on an
atomless continuous transition probability.?! In the particular case of this example,
the above paragraph shows that even though Pg(al,ag,x) is not always convex
valued on the nondegenerate set [—e, €], Ps (a1, az) is still convex valued and upper
hemicontinuous. Such a result also follows from the general observations since

Nature’s move 7 is atomless and continuous in (aj,as). Here is a pure-

a1,a
strategy subgame—ll)elﬁect equilibrium in the game G, for ¢ > 0: players 1 and 2
choose a; = 1 and ae = 1, players 3 and 4 choose U and u when x < 0, D and d
when x > 0. In this equilibrium, both players 1 and 2 get the payoff %

For the case € = 0, the game Gy is the counterexample in Luttmer and Mariotti
(2003), which does not have any subgame-perfect equilibrium. If a; + a9 < 2, then
Nature’s move z is uniformly distributed on the nondegenerate interval [—2 4 a; +
ag,2 — a1 —az]. As x = 0 is drawn with probability 0, the non-convexity of the set
of continuation payoffs for players 1 and 2 at x = 0 does not matter. The expected

continuation payoffs for players 1 and 2 are %al and %ag, respectively. That is,

]-:’20((11,(12) = {(%al,%ag)} when a; +ag < 2. If a1 + a2 = 2 (ie., a1 = ag = 1),

then Nature’s move must be x = 0, and hence

BY(L 1) = PY(1,1,0) = {(1, (2~ Sa))le € 0,11} U{(28,0)16 € [5, 1]},

Whenever a; + ag < 2, both players 1 and 2 have the incentive to choose their
actions as close to 1 as possible, which gives them the expected payoff arbitrarily
close to % However, when both players 1 and 2 choose the action 1, some of
them shall get a payoff no more than 1. This implies that there does not exist any
subgame-perfect equilibrium.

As shown above, for any ¢ > 0, both players 1 and 2 in the game G, have
3 3
272
players 1 and 2 in the game Gy, the equilibrium payoff correspondence of the games

3

5 as their equilibrium payoffs. Since (3, 5) cannot be the equilibrium payoffs of

G, e > 0 is not upper hemicontinuous at ¢ = 0.

Note that Nature’s move 17?

a1,03) is continuous in (a1, a2) € [0,1] x [0, 1], and

20See Lemma 7 in Section 6.1.
2INote that when the transition probability has an atom in its values, both properties may not be
true. This is demonstrated in the case ¢ = 0 below.

11



atomless except for the one point (a1,a2) = (1,1). Footnote 21 indicates that
the integral of an upper hemicontinuous correspondence with respect to such
a transition probability may not be upper hemicontinuous and convex valued.
Indeed, even though 15:? is an upper hemicontinuous correspondence, 1520 is neither
upper hemicontinuous nor convex at the point (1,1). In particular, (%al, %(Iz) €
PY(ay,as) when a; + ag < 2, while its limit (3,3) ¢ PY(1,1) when both a; and ay
converge to 1.

4 Continuous dynamic games

In this section, we consider continuous dynamic games in the sense that all the
model parameters (the payoff functions, state transitions and action correspon-
dences) are continuous in both action and state variables. We shall show that
subgame-perfect equilibria exist for continuous dynamic games under the condition
of atomless transitions. In Sections 4.1, we first consider dynamic games with
almost perfect information, and show the existence of subgame-perfect equilibria.
In Section 4.2, we consider dynamic games with perfect information in the sense
that players move sequentially, and prove the existence of pure-strategy subgame-
perfect equilibria. In Subsetion 4.3, we provide a roadmap for proving Theorems 1
and 2. The details of the proofs are left in Appendix A. In Section 4.4, we extend
the model so that the previous existence results for continuous dynamic games
with perfect and almost perfect information are covered as special cases. As a

byproduct, we provide a new existence result for continuous stochastic games.

4.1 Continuous dynamic games with almost perfect

information

In this subsection, we study an infinite-horizon continuous dynamic game with
almost perfect information. Intuitively, we work with the class of games in which
all the relevant parameters of the game, including action correspondences, Nature’s
move and payoff functions, vary smoothly with respect to the state and action
variables. In particular, a dynamic game is said to be “continuous” if for each t
and 1,

1. the action correspondence Ay; is continuous on H;_1;%?

2. the transition probability fy is a continuous mapping from H; 1 to M(Sy),

where M (S;) is endowed with the topology of weak convergence (also called

227 correspondence is said to be continuous if it is both upper hemicontinuous and lower
hemicontinuous. For definitions and detailed discussion, see Section 6.1.
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the weak star topology); that is, for any bounded continuous function v on

St, the integral
/S Y(se) fro(dse|he—1)
t

is continuous in h;_1;
3. the payoff function w; is continuous on H,.

Below, we propose the condition of “atomless transitions” on the state space,

which means that Nature’s move is an atomless probability measure in any stage.

Assumption 1 (Atomless Transitions). For each t > 1, fio(hi—1) is an atomless

Borel probability measure for each hy—1 € Hy_1.

The notion of subgame-perfect equilibrium is given below. It requires each
player’s strategy to be optimal in every subgame given the strategies of all other

players.

Definition 2 (SPE). A subgame-perfect equilibrium is a strategy profile f such
that for alli € I, t >0, and all hy € Hy, player i cannot tmprove his payoff in the

subgame hy by a unilateral change in his strategy.

Let Ey(hi—1) be the set of subgame-perfect equilibrium payoffs in the subgame
hi—1. The following result shows that a subgame-perfect equilibrium exists, and the
equilibrium correspondence E}; satisfies certain desirable compactness and upper

hemicontinuity properties.

Theorem 1. If a continuous dynamic game with almost perfect information has
atomless transitions, then it possesses a subgame-perfect equilibrium. In addition,

E, is nonempty and compact valued, and upper hemicontinuous on Hy_1 for any
t>1.

Remark 1. Theorem 1 goes beyond the main result of Harris, Reny and
Robson (1995) for continuous dynamic games, where the ezistence of subgame-
perfect equilibria was shown for those extended games obtained from the original
games by introducing stagewise public randomization as a correlation device.
Such a correlation device does not influence the payoffs, transitions or action
correspondences. It is clear that the extended games with stagewise public
randomization as in Harris, Reny and Robson (1995) automatically satisfy the
condition of atomless transitions. The states in our model are completely
endogenous in the sense that they can affect all the model parameters such as

payoffs, transitions, and action correspondences.

13



4.2 Continuous dynamic games with perfect informa-
tion

In this subsection, we consider another important class of continuous dynamic
games, namely continuous dynamic games with perfect information (with or
without Nature). In such games, players move sequentially. We show the existence
of pure-strategy subgame perfect equilibria. In particular, the condition of atomless
transitions is imposed only when Nature moves.

In a continuous dynamic game with perfect information, there is only one player
moving in each stage. In stage ¢, if Ay is not point valued for some player ¢ € I,
then Ay; is point valued for any j € I as long as j # ¢, and fi(hi—1) = J;, for some
s¢. That is, only player ¢ is active in stage ¢, while all the other players are inactive.
If the state transition fiy does not put probability 1 on some point, then A;; must
be point valued for any ¢ € I. That is, only Nature can move in stage ¢, and all the
players i € I are inactive in this stage. A continuous dynamic game with perfect
information is said to have atomless transitions if f;o(h;—1) is an atomless Borel

probability measure when only Nature moves in the stage t.

Theorem 2. If a continuous dynamic game with perfect information has atomless
transitions, then it possesses a pure-strateqy subgame-perfect equilibrium. In
addition, E; is nonempty and compact valued, and upper hemicontinuous on Hy_q
for anyt > 1.

Remark 2. As shown in Bérgers (1989), Fudenberg and Levine (1983), Harris
(1985), Hellwig and Leininger (1987), Hellwig et al. (1990), and Zermelo (1913),
pure-strategy subgame-perfect equilibria exist in deterministic (i.e., without Nature)
continuous dynamic games with perfect information. Theorem 2 extends those
existence results to the case with Nature. We may point out that the condition of
atomless transitions in Theorem 2 is minimal. In particular, the games in Section
3 can be viewed as an alternating move game with a starting point € € [0, 1], where
the transition probability nfalm) in the third period is continuous in (€,a1,a2) €
[0,1]3, and atomless except for the one point (e,a1,a2) = (0,1,1). The violation
of our condition of atomless transitions at just one point leads to the failure of the

conclusions of Theorem 2.%3

230n the other hand, Remark 4 indicates that Theorem 2 can be generalized to the case when the
state transitions either are atomless, or have the support inside a fixed finite set irrespective of the
history at a particular stage.
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4.3 A roadmap for proving Theorems 1 and 2

The existence results are established in three steps. The backward induction step
aims to show that if the equilibrium payoff correspondence @); in stage t is well-
behaved (bounded, nonempty and compact valued, and upper hemicontinuous),
then these desirable properties can be preserved for the equilibrium payoff
correspondence ;1 in the previous stage ¢t — 1. As will be explained, the
atomless transition condition plays an important role in this step. Next, given
the equilibrium payoff correspondences across different periods, one needs to
construct the equilibrium strategy profile stage by stage that is consistent with
the equilibrium payoff correspondences. This is done in the forward induction
step. The first two steps together prove the equilibrium existence results for finite-
horizon dynamic games. The last step relates finite-horizon dynamic games to
infinite-horizon dynamic games based on the condition of continuity at infinity.
We shall sketch the main ideas of the proof based on simultaneous-move games,

and point out the modifications for alternating-move games whenever necessary.

(1) We explain the first (backward induction) step via a T-stage dynamic game.
Let Q(741)(hr) be the singleton set with one element vector (ui(hr),. .., un(hr))
for any T-stage history hp, where u; is the payoff function of player ¢ at the last
stage T' (a bounded continuous function from the space of complete histories Hr
to R). Hence, Q(7+1)i 1s a bounded, nonempty and compact valued, and upper
hemicontinuous correspondence. Given a history hp_; at stage T' — 1, the state
st at stage T follows the distribution frg(-|hr—1). For an action profile z7 and a
state sp at stage T, (hp—1, 2T, sT) is a history at stage T'; let

Pr(hr—1,x7) ==/Q Qr+1(hr—1, 27, s7) fro(dsr|hr—_1).
T

Then Pr(hr_1,-) is the set of expected possible payoff vectors in the subgame
hr_1.

Let ®(Q7+1)(hr—1) be the set of all mixed-strategy Nash equilibrium payoffs
for the game with the action set Ap;(hr—1) and the payoff function Pr(hr_1,-).
Then ®(Q741) is a bounded, nonempty and compact valued, and upper hemicon-
tinuous correspondence from Hp_; to R™. Intuitively, ®(Q741)(hr—2, 7_1,87-1)
represents the set of all possible payoff vectors in the subgame hp_o when Nature’s

move is s7_1 and the players choose the action profile z7_; in stage T'— 1.2* Note

MFor hr_y = (hr_o,wp_1,57_1), ®(Qr41) is a correspondence from Hr_; to R™.  Given
(hr—2,x7_1), we slightly abuse the notation by viewing ®(Qr41)(hr—2,z7_1,-) as a correspondence
from S7_1 to R™.
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that in the subgame hp_o,

Pr_y(hr—g,27-1) = /S ®(Qr+1)(hr—2, x7-1, 87-1) fr-1)0(dST-1|h7-2)
T—-1
is the set of payoff vectors. It is shown in Simon and Zame (1990) that if a payoft
correspondence Pr_; is bounded, nonempty, convex and compact valued, and
upper hemicontinuous, then it possesses a Borel (possibly discontinuous) selection
such that there exists an equilibrium in mixed strategy by taking this selection as
the payoff function.?> The difficulties here are that (1) the correspondence Pr_1 is
no longer single-valued, and may not be convex valued; (2) even though ®(Qr11)
is an upper hemicontinuous correspondence, it is not clear whether Pr_; is upper
hemicontinuous or not.?® By introducing the condition of “atomless transition,”
we show that (1) even though ®(Q41) may not be convex valued, if fir_1yo(h7r-2)

is atomless, then
/ Q(Qry1)(hr—2, 271, 87-1) frr—1)0(dsT—1|hr—2)
St_1

:/S co®(Qr41)(hr—2, 271, 87-1) frr—1)0(dsT-1|h1r—2);
T—1

hence, Pr_1(hp—2,xp_1) is convex; (2) Pr_q(hp—2,xp—1) is upper hemicontinuous
because the correspondence co®(Qr41) under the integral is convex valued and
upper hemicontinuous. We can then repeat this backward induction argument
from ®(Qr+1) until the first stage.

Note that the key in the backward induction step is to preserve the convexity
and upper hemicontinuity of the correspondences. As one arrives at the first stage,
there is no need to conduct the backward induction again. Thus, our result can
be strengthened by relaxing the condition of atomless transitions in the first stage.
In simultaneous-move games, the argument in the previous paragraph requires
that Nature be active and have an atomless transition in every stage (except the

first stage). In alternating-move games, we only require that Nature’s move be

251t was demonstrated in Stinchcombe (2005, Example 2.2) that given an exogenous payoff
correspondence with two measurable selections v and u, an equilibrium strategy of a player for the
game with v as the payoff functions may be a strictly dominated strategy for the game with u as the
payoff functions. Such an issue does not arise in our setting. Our primitives for the payoffs are the
payoff functions (not payoff correspondences) of the players. When a full history is given, the players
have a unique payoff vector in our setting. The payoff correspondence in our backward induction step is
endogenous. As shall be explained in Steps 2 and 3, each payoff vector given by the payoff correspondence
corresponds to a subgame perfect equilibrium in the original dynamic game. On the other hand, it is
clear that any subgame perfect equilibrium strategy of a player in a dynamic game cannot be a strictly

dominated strategy of that game.

26 A5 illustrated in Section 3, the upper hemicontinuity property may not be preserved if the transition

probability has an atom in its value.
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atomless whenever Nature is active (except the first stage). In particular, when
Nature is inactive in some stage t, P, is indeed ®(Q¢+1), a bounded, nonempty
and compact valued, and upper hemicontinuous correspondence. The one who is
the only active player in that stage faces a single-player decision problem. The
key observation is that the only active player must possess an optimal choice in
pure strategy even though P;_; may not be convex valued. When Nature is active,
the reason why the backward induction argument holds is the same as that in the

previous paragraph.

(2) We now describe the second (forward induction) step. Suppose that g
is a measurable selection of ®(Q11) in some stage t. Given the construction
in backward induction step, q;(h;—1) represents a possible payoff vector in the
subgame h;_; if all the players follow some equilibrium strategy in the subsequent
stages. The aim of this step is to identify those subsequent equilibrium strategies
and the corresponding payoff functions.

Based on the construction of ®(Q;+1), one can expect that in every subgame
hi—1, there exists a strategy profile fi(h;—1) and a payoff profile g;(hi—1,-) €
Pi(h¢—1,-) such that for all hy_1 € H;_1,

Logi(hi-1) = [4,, ;) 9t(he-1, @) fr(dz|he1);

2. fi(ht—1) is a Nash equilibrium in the subgame h;_; with the payoff g;(h¢—1, -)

and action space A;(hi—1).

The key technical difficulties here are that (1) the payoff function g; needs to
be jointly measurable in (h;—j,z); and (2) one needs to further construct a
jointly measurable selection q;11 of Q41 (in (hi—1,x¢, s¢)) such that g¢(hi—1, ) =
sz Gt+1(he—1, x4, 8¢) fro(dsg|hy—1) for all hy—y € Hy—y and x; € Ay(hi—1). We solve
the first issue by carefully modifying the argument in Reny and Robson (2002).
For the second one, we show that a deep “measurable” measurable choice theorem
of Mertens (2003) can be used to address this issue.?”

By completing this step, we establish the relationship between the equilibrium
payoff correspondence in stage t + 1, and the equilibrium payoff correspondence
in stage t if all players play some equilibrium strategy in the subsequent stage.
Together with the first step, the forward induction helps us obtain the equilibrium
existence result in dynamic games with finite stages as follows. We can start with
backward induction from the last period and stop at the initial period, then run

forward induction from the initial period to the last period.

2TIn Harris, Reny and Robson (1995) and Reny and Robson (2002), the joint measurability follows
from the measurable version of Skorokhod’s representation theorem and implicit function theorem,
respectively. These arguments are not applicable here.
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(3) Step 3 proves the equilibrium existence result in infinite-horizon dynamic
games via Lemmas 11-15.

Since there is no last stage in the infinite-horizon setting, it is not clear where
one should start with backward induction argument. We pick an arbitrary stage
7 > 1 and let Q7 be the expected payoff correspondence in stage 7 if the players
are free to choose any (not necessarily equilibrium) strategies in the future stages.
Then run backward induction based on Q7. from stage 7, and denote Q7 as the
equilibrium payoff correspondence in stage t fort < 7. Fort > 7+1,let Q7 = QT ;.
Lemmas 11 and 12 show that the set of possible equilibrium payoff vectors satisfy
desirable properties. In particular, )7 is bounded, measurable, nonempty and
compact valued, and upper hemicontinuous.

It is easy to see that Q7 (hs—1) € Q7 *(h4_1) for any hy_;. That is, {QF }r>1
is a decreasing sequence in terms of 7. Denote Qf° = N;>1Q7. Lemma 13 shows
that Q° = ®(Q?%,). By induction, Q° = ®7~#(Q%°) for any 7 > ¢. That is, given
the payoff correspondence ()2° in stage 7 for 7 > ¢, Qf° is the equilibrium payoff
correspondence in stage ¢ due to the construction of backward induction. Because
of the assumption of continuity at infinity, the strategies in the far future are not
important. For fixed ¢, it means that Q7° will be very close to the set by running
backward induction from stage 7 to stage t based on the actual equilibrium payoff
correspondence in stage 7 if 7 is sufficiently large. Since Q?° is the intersection
of all such 2°, it is natural to expect that Q° is indeed the equilibrium payoff
correspondence in stage t. Recall that E;(h;—1) is the set of payoff vectors of
subgame-perfect equilibria in the subgame h;_1. Given a measurable selection c¢;
of ®(Q7% ), Lemma 14 shows that c;(hs—1) is a subgame-perfect equilibrium payoff
vector in the subgame h;_; by constructing the subsequent equilibrium strategies
based on the forward induction; that is, ®(Q7%;)(ht—1) € E¢(h¢—1). In Lemma 15,
we show that Ey(h¢—1) € Q7°(h¢—1). Then we have Q¢°(hs—1) = ®(Qf51)(ht—1) =
E;(ht—1). This completes the sketch for the infinite-horizon case.

4.4 An extension

In this subsection, we extend the model of continuous dynamic games as specified
in the previous two subsections. The aim is to combine the models of dynamic
games with perfect and almost perfect information, and cover an important class
of dynamic games, namely stochastic games. We show the existence of a subgame-
perfect equilibrium such that whenever there is only one active player at some
stage, the player can play pure strategy as part of the equilibrium strategies. As a

byproduct, we obtain a new existence result for continuous stochastic games.
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For concreteness, we shall allow for the case in which (1) the state transition
depends on the action profile in the current stage as well as on the previous
history, and (2) the players may have perfect information in some stages. The
first modification covers the model of stochastic games as a special case. The
second change allows us to combine the models of dynamic games with perfect and

almost perfect information.

1. For each t > 1, the choice of Nature depends not only on the history h;_1, but
also on the action profile x; in this stage. For any ¢t > 1, suppose that Ay is a
continuous, nonempty and closed valued correspondence from Gr(A;) to S;.
Then H; = Gr(As), and Hy is the subset of X x S such that (z,s) € Hu
if (z¢,s') € Hy for any t > 0.

2. Nature’s action is given by a continuous mapping fio from Gr(A;) to M(St)
such that ftO(AtO(ht—l,xt)‘ht—laxt) =1 for all (ht_l,xt) € Gl"(At).

3. For each t > 1, we use the notation Ny to track whether there is a unique

active player in stage t. In particular, let

1, if fio(ht—1,2¢) = ds, for some s; and
N = |{i € I: Ay is not point valued}| =1,

0, otherwise,

where |K| represents the number of points in the set K. Thus, if NV, = 1,
then the player who is active in the period t is the only active player and has

perfect information. If N; = 0, then Nature moves in this stage.

Similarly as in Section 4.2, we can drop the condition of atomless transition in

those periods with only one active player in I.

Assumption 2 (Atomless Transitions’). 1. For anyt > 1 with Ny =1, S; is a
singleton set {$;}.
2. For each t > 1 with Ny = 0, fuo(hi—1,2¢) is an atomless Borel probability
measure for each hy—1 € Hy—1 and x; € Ay(hi—1).

The result on the equilibrium existence is presented below.

Proposition 1. If a continuous dynamic game (as described above) satisfies the
condition of atomless transitions', then it possesses a subgame-perfect equilibrium
f- In particular, for j € I andt > 1 such that N; = 1 and player j is the only
active player in this period, fi; can be chosen to be deterministic. In addition, Fy

is nonempty and compact valued, and upper hemicontinuous on Hy_1 fort > 1.

As the extension above covers the model of continuous stochastic games, a new

equilibrium existence result can be stated below for continuous stochastic games.
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Proposition 2. If a continuous stochastic game has atomless transitions, then it

possesses a subgame-perfect equilibrium.

Remark 3. Consider a standard stochastic game with uncountable states as
in Mertens and Parthasarathy (2003), where the existence of a subgame-perfect
equilibrium was shown by assuming the state transitions (not necessarily atomless)
to be norm continuous (in the norm topology on the space of Borel measures) with
respect to the actions in the previous stage.?® It is noted in (Maitra and Sudderth,
2007, p. 712) that “This is a very strong condition”. Maitra and Sudderth (2007)
also indicated on the same page the desirability to weaken such a norm continuity
condition: “it would be preferable to assume some sort of weak continuity ...”.
By restricting our result on general dynamic games to the setting of stochastic
games, we obtain the existence of subgame-perfect equilibria in stochastic games
whose state transitions are atomless and continuous in the weak star topology on
the space of Borel measures. Our result cannot be covered by the result in Mertens
and Parthasarathy (2003), and vice versa.

We provide a simple example to demonstrate that our continuity condition on
the state transitions is indeed weaker than the norm continuity condition required

by Mertens and Parthasarathy (2003). Consider the following state transitions.
e The action space is Ay = Az = [0, 1].
e The state space in stage t is a product space: Sy = Sy x S = [0,1] x [0, 1].

o Given si—1 = (S@4—1)1,S(t—1)2) and a;—1 = (ag_1y1,a—1)2), the stage transi-
tion fio(-|st—1,at—1) induces a product probability measure 1 (+|St—1,a1-1) @
o (+|st—1,ai—1) on Sy X Sy, where P (-|si—1,a1—1) is the uniform distribu-

tion on Sy = [0, 1] regardless of (si—1,at—1), and

4

11+ S—1)2 + Ge—1)1 + ap—
” (Sﬂ _ Se-m1 +Se-n2 +ag-11 + g 1)2|8t1,at1) .

That is, given (S¢—1,a¢—1), ¥ (+|St—1, ar—1) puts probability 1 on their average.

Since o gives the uniform distribution on Sy, the state transition is atomless.
In addition, the state transition fyo is continuous as Wy s continuous and Yo is
constant.

The state transition fig is clearly not norm continuous. For example, we fix
si-1 = (8g—1)1,5@—1)2) and a sequence {ay 1 }n>0 such that su_1y1 + sg—1)2 = z

(a?t_l)l, a’(lt_l)Q) — (a?t_l)l, a?t—1)2) as n — 0o, and a’é_l)l + a?t—1)2 = % — ﬁ for

Z8For detailed discussions on general stochastic games, see Jaskiewicz and Nowak (2016).
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anyn > 1. Then

fto <{i} x [0, 1]‘375_1,@?1) =0-»1= fy <{i} x [0, 1]‘8,5_1,@?1) .

5 Measurable dynamic games

In this section, we consider the more general setting in which the model parameters
are jointly measurable in the action and state variables, but continuity is only
required for the action variables. The proofs of the results in this section are left
in Appendix B.

In Section 5.1, we adopt the model specified in Section 4.1, but relax the
continuity requirement to measurability in the state variables. To obtain the
existence of subgame-perfect equilibria, we strengthen the condition “atomless
transitions” to the condition “atomless reference measure (ARM)” on the state
transitions. The latter condition means that in each stage, there is an atomless
reference measure and the state transitions are absolutely continuous with respect
to this reference measure. In Section 5.2, we consider dynamic games with perfect
information. The ARM type condition is imposed only when Nature moves. We
show the existence of pure-strategy subgame-perfect equilibria. In Section 5.3,
we provide a roadmap for proving Theorems 3 and 4. To omit the repetitive
descriptions, we follow the argument in Section 4.3 and only highlight the necessary
changes.

In Appendix B, we present a further extension by partially relaxing the ARM
condition in two ways. First, we allow the possibility that there is only one active
player (but no Nature) at some stages, where the ARM type condition is dropped.
Second, we introduce an additional weakly continuous component on the state
transitions at any other stages. In addition, we allow the state transition in each
period to depend on the current actions as well as on the previous history. As
the generalization of the model in Section 4.4, (1) we combine the models for
measurable dynamic games with perfect and almost perfect information, (2) we
show the existence of subgame perfect equilibria such that whenever there is only
one active player at some stage, the player can play pure strategy as part of the

equilibrium, and (3) a new existence result is obtained for stochastic games.

5.1 Measurable dynamic games with almost perfect

information

We will follow the setting and notations in Section 4.1 as closely as possible,

and only describe the changes we need to make on the model. In Section 4.1,
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we assume that the relevant model parameters (action correspondences, Nature’s
move, and payoff functions) are continuous in both actions and states. Here, we
shall work with the class of games with sectionally continuous model parameters
in the following sense. Suppose that Yi, Yo and Y3 are all Polish spaces, and
Z C Yy xYs. Denote Z(y1) = {y2 € Yao: (y1,y2) € Z} for any y; € Y7. A function
(resp. correspondence) f: Z — Y3 is said to be sectionally continuous on Y3 if
f(y1,-) is continuous on Z(y;) for all y; with Z(y1) # (. Similarly, one can define
the sectional upper hemicontinuity for a correspondence.

Compared with continuous dynamic games with almost perfect information, the

changes we need to make to describe measurable dynamic games are as follows.
1. For any t > 1 and i € I, Ay; is sectionally continuous on X*~1.29
2. For any t > 1, fio is sectionally continuous on X*~1.
3. For each i € I, the payoff function wu; is sectionally continuous on X °.

For each t > 0, suppose that )\ is a Borel probability measure on S; and \; is
atomless for ¢t > 1. Let \' = ®p<p<i Mg for ¢ > 0. We shall assume the following

condition on the state transitions.

Assumption 3 (Atomless Reference Measure (ARM)). A dynamic game is said

to satisfy the “atomless reference measure (ARM)” condition if for each t > 1,

1. the probability fio(-|hi—1) is absolutely continuous with respect to A\ on Sy
with the Radon-Nikodym derivative ¢io(hs_1,5¢) for all hy_1 € Hy_1;>°

2. the mapping @y is Borel measurable and sectionally continuous on X1, and
integrably bounded in the sense that there is a A¢-integrable function ¢¢: Sy —
Ry such that pi(hi—1,St) < ¢i(st) for any hy—1 € Hi—1 and s; € St.

When one considers a dynamic game with infinite horizon, the following
“continuity at infinity” condition is standard.?! This condition means that the
actions and states in the far future would not matter that much for any player’s
payoff. In particular, all discounted repeated games or stochastic games satisfy

this condition.

29Note that a history mixes the multiple components of states and actions in different periods. As
noted in Footnote 15, one can also view a history h;_; as an element in X*~! x S*~! by abusing the
notation.

30Tt is common to have a reference measure when one considers a game with uncountable states. For
example, if S; is a convex subset of R!, then the uniform distribution on the convex set is a natural
reference measure. In particular, the condition that the state transitions are absolutely continuous with
respect to a reference measure is widely adopted in the literature on stochastic games; see, for example,
Nowak (1985), Nowak and Raghavan (1992), Duffie et al. (1994) and He and Sun (2017).

31See, for example, Fudenberg and Levine (1983).
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For any T' > 1, let

w' = sup |ui(z,s) —u(T,3)|. (1)
el
(ZE,S)GHOO
(fvg)eHOO
2T—1_zT-1
sT—1_35T—1
Assumption 4 (Continuity at Infinity). A dynamic game is said to be “continuous

at infinity” if wT — 0 as T — oco.

We shall modify the notion of subgame-perfect equilibrium slightly. In
particular, when the state space is uncountable and has a reference measure, it is
natural to consider the optimality for almost all sub-histories in the probabilistic
sense:3? a property is said to hold for Af-almost all hy = (2t, s) € Hy if it is satisfied
for Al-almost all s' € S and all 2! € Hy(s').

Definition 3 (SPE). A subgame-perfect equilibrium is a strategy profile f such
that for all i € I, t > 0, and A-almost all hy € Hy, player i cannot improve his
payoff in the subgame hy by a unilateral change in his strategy.

The theorem below shows the existence of a subgame-perfect equilibrium under
the conditions of ARM and continuity at infinity. Recall that E;(h;—1) is the set
of all subgame-perfect equilibrium payoffs in the subgame h;_1. The theorem also
shows the compactness and upper hemicontinuity properties of the correspondence
FE.. In particular, we shall work with the upper hemicontinuity property also in
the probabilistic sense. Suppose that Y7, Y5 and Y3 are all Polish spaces, and
Z C Y1 x Y,y and 7 is a Borel probability measure on Y;. Denote Z(y1) = {y2 €
Yo: (y1,y2) € Z} for any y; € Yi. A function (resp. correspondence) f: Z — Y3
is said to be essentially sectionally continuous on Y3 if f(y1,-) is continuous on
Z(y1) for n-almost all y;. Similarly, one can define the essential sectional upper

hemicontinuity for a correspondence.

Theorem 3. If a dynamic game with almost perfect information satisfies the
ARM condition and is continuous at infinity, then it possesses a subgame-perfect
equilibrium. In addition, E; is nonempty and compact valued, and essentially

sectionally upper hemicontinuous on X'~ 1.

5.2 Measurable dynamic games with perfect informa-
tion

In this subsection, we consider dynamic games with perfect information (with or

without Nature). We will follow the setting and notations in Section 4.2, and make

32See, for example, Abreu, Pearce and Stacchetti (1990) and Footnote 4 therein.
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the same changes as those in Section 5.1. In particular, the continuity requirement
in the state variables are dropped.

In dynamic games with perfect information where players move sequentially,
we show the existence of pure-strategy subgame-perfect equilibria. The ARM
condition is imposed when Nature moves, and is dropped in those periods with

one active player from the set I.%3

Theorem 4. If a dynamic game with perfect information satisfies the ARM
condition and is continuous at infinity, then it possesses a pure-strategy subgame-
perfect equilibrium. In addition, E; is nonempty and compact valued, and

essentially sectionally upper hemicontinuous on X'~' for any t > 1.

5.3 A roadmap for proving Theorems 3 and 4

The logic for the proofs of Theorems 3 and 4 is similar to that for the proofs
of Theorems 1 and 2. The existence results are also established in three steps.
However, new subtle difficulties arise. In this subsection, we summarize the main
changes for proving Theorems 3 and 4. For simplicity, we omit the repetitive
descriptions and adopt the same notations as in Section 4.3.

In the first (backward induction) step, following the same argument as in
Section 4.3, one can construct the correspondence FP;. Recall that the key role
of the atomless transition condition is to guarantee that P; is convex valued and
upper hemicontinuous. With the condition of atomless reference measure, one is
still able to show that P; is convex valued. However, though the correspondence P;
remains upper hemicontinuous in actions, it is only measurable with respect to the
states. As a result, the existence result in Simon and Zame (1990) is not readily
applicable. We extend their existence result by allowing the payoff correspondence
to be upper hemicontinuous in actions, but measurable in states. The key of
this extension is to approximate the measurable correspondence by continuous
correspondences based on Lusin’s theorem (see Lemma 3).

In the forward induction step, an important observation is that the set of
histories H; 1 at stage t can be divided into countably many Borel subsets
{H}",}m>0 with desirable properties. In particular,

AUy >1PTO] ge—1 (H™ ) .
— m = S t—1 _ m
1. Hi—1 = Up>oH", and N (Projg (Hy) | = 1, where projg:—1(H;";)

and projg:-1(Hy;—1) are projections of H"; and H;_; on S'~1;

33 As noted in Remark 4, Theorem 4 can be generalized to the case when the state transitions either
satisfy the ARM condition, or have the support inside a fixed finite set irrespective of the history at a
particular stage.
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2. for m > 1, H", is compact, ®; is upper hemicontinuous on H;", and P; is

upper hemicontinuous on
{(ht,l,xt): htfl S thilv'xt S At(htfl)}.

Note that within each compact subset H;", for m > 1, the correspondences ®; and
P, are well behaved. One can apply forward induction argument from the proof
for continuous dynamic games to each H;",, which enables us to obtain a strategy
defined on this subset H",. The forward induction step for measurable dynamic
games is then completed by combining the equilibrium strategies obtained on H/",
m > 0 (subject to slight modifications).

The last step (extending the finite-horizon setting to infinite-horizon setting)
follows a similar logic as that explained in the third step of Section 4.3. The
main challenge is to handle various subtle measurability issues due to the lack of
continuity in the state variables. As described in Section 4.3, the idea of this step is
to show the upper hemicontinuity of equilibrium payoff correspondences in infinite
horizon. In the case of continuous dynamic games, this property is shown, based on
a few technical lemmas on upper hemicontinuous correspondences. For the class of
measurable dynamic games as considered here, we need to extend those technical

lemmas to the more difficult case of measurable correspondences.

6 Appendix A

In Section 6.1, we present several lemmas as the mathematical preparations for
proving Theorems 1, 2 and Proposition 1. Since correspondences will be used
extensively in the proofs, we collect, for the convenience of the reader, several
known results on various properties of correspondences.?* One can skip Section 6.1
first and go to the proofs in Sections 6.2-6.4 directly, and refer to those technical
lemmas in Section 6.1 whenever necessary.

The proof of Theorem 1 is provided in Section 6.2. In Sections 6.3 and 6.4, we
give the proofs of Theorem 2 and Proposition 1, respectively. We will only describe
the necessary changes in comparison with the proofs presented in Sections 6.2.1-
6.2.3.

34These technical lemmas are stated in a general form so that they can still be used in the proofs in
Appendix B for the case of measurable dynamic games.
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6.1 Technical preparations

Let (S,S) be a measurable space and X a topological space with its Borel o-algebra
B(X). A correspondence ¥ from S to X is a function from S to the space of all
subsets of X. A mapping 1 is said to be a selection of W if ¥ (s) € ¥(s) for any
s € S. The upper inverse ¥* of a subset A C X is

U4(A)={seS: ¥(s) C A}.
The lower inverse ¥ of a subset A C X is
\IJI(A) ={seS:U(s)NA#0D}.

The correspondence W is
1. weakly measurable, if ¥/(O) € S for each open subset O C X;
2. measurable, if U/(K) € S for each closed subset K C X.

The graph of VU is denoted by Gr(¥) = {(s,z) € S x X:s € S,z € ¥(s)}. The
correspondence U is said to have a measurable graph if Gr(¥) € S ® B(X).
If S is a topological space, then ¥ is

1. upper hemicontinuous, if ¥*(0) is open for each open subset O C X;

2. lower hemicontinuous, if ¥!(0) is open for each open subset O C X

3. continuous, if it is both upper hemicontinuous and lower hemicontinuous.
The following two lemmas present some basic measurability and continuity

properties for correspondences.

Lemma 1. Let (S,S) be a measurable space, X a Polish space endowed with the
Borel o-algebra B(X), and K the space of nonempty compact subsets of X endowed
with its Hausdorff metric topology. Suppose that ¥: S — X is a nonempty and

closed valued correspondence.
1. If ¥ is weakly measurable, then it has a measurable graph.
2. If W is compact valued, then the following statements are equivalent.

(a) The correspondence ¥ is weakly measurable.
(b) The correspondence ¥ is measurable.
(¢) The function f: S — IC, defined by f(s) = W(s), is Borel measurable.
3. Suppose that S is a topological space. If U is compact valued, then the
function f: S — K defined by f(s) = W(s) is continuous if and only if the

correspondence U is continuous.
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4. Suppose that (S,S, \) is a complete probability space. Then ¥ is S-measurable

if and only if it has a measurable graph.

5. For a correspondence W: S — X between two Polish spaces, the following

statements are equivalent.

(a) The correspondence ¥ is upper hemicontinuous at a point s € S and
U(s) is compact.

(b) If a sequence (sy, xy) in the graph of VU satisfies s, — s, then the sequence
{zn} has a limit in V(s).

6. For a correspondence W: S — X between two Polish spaces, the following

statements are equivalent.

(a) The correspondence V¥ is lower hemicontinuous at a point s € S.

b) If s, — s, then for each x € W(s), there exist a subsequence {sn, } o
k
{sn} and elements x, € W(sy, ) for each k such that xj — .

7. Given correspondences F': X =Y and G: Y — Z, the composition F' and G
is defined by
G(F (7)) = Uyer@)G(Y)-

The composition of upper hemicontinuous correspondences is upper hemicon-
tinuous. The composition of lower hemicontinuous correspondences is lower

hemicontinuous.

Proof. Properties (1), (2), (3), (5), (6) and (7) are Theorems 18.6, 18.10, 17.15,
17.20, 17.21 and 17.23 of Aliprantis and Border (2006), respectively. Property (4)
follows from Proposition 4 in page 61 of Hildenbrand (1974). O

Lemma 2. 1. A correspondence ¥ from a measurable space (S,S) into a topo-
logical space X is weakly measurable if and only if its closure correspondence
W is weakly measurable, where V(s) is the closure of the set W(s) in X for
each s € S.

2. For a sequence {¥,,} of correspondences from a measurable space (S,S)
into a Polish space, the union correspondence W(s) = Up>1Up(s) is weakly
measurable if each V,, is weakly measurable. If each V., is weakly measurable
and compact valued, then the intersection correspondence ®(s) = Ny>1 W (s)

is weakly measurable.

3. A weakly measurable, nonempty and closed valued correspondence from a

measurable space into a Polish space admits a measurable selection.

4. A correspondence with closed graph between compact metric spaces is mea-

surable.
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5. A nonempty and compact valued correspondence VU from a measurable space
(S,S) into a Polish space is weakly measurable if and only if there exists a
sequence {11,9. ...} of measurable selections of W such that ¥(s) = ®(s),
where ®(s) = {11(s),2(s),...} for each s € S.

6. The image of a compact set under a compact valued upper hemicontinuous

t.35

correspondence is compac If the domain is compact, then the graph of a

compact valued upper hemicontinuous correspondence is compact.

7. The intersection of a correspondence with closed graph and an upper hemi-

continuous compact valued correspondence is upper hemicontinuous.

8. If the correspondence U: S — Rl is compact valued and upper hemi-
continuous, then the convexr hull of ¥ is also compact valued and upper

hemicontinuous.

Proof. Properties (1)-(7) are Lemmas 18.3 and 18.4, Theorems 18.13 and 18.20,
Corollary 18.15, Lemma 17.8 and Theorem 17.25 in Aliprantis and Border (2006),
respectively. Property 8 is Proposition 6 in page 26 of Hildenbrand (1974). O

Parts 1 and 2 of the following lemma are the standard Lusin’s Theorem
and Michael’s continuous selection theorem, while the other two parts are about

properties involving mixture of measurability and continuity of correspondences.

Lemma 3. 1. Lusin’s Theorem: Suppose that S is a Borel subset of a Polish
space, X is a Borel probability measure on S and S is the completion of B(S)
under A. Let X be a Polish space. If f is an S-measurable mapping from S to
X, then for any € > 0, there exists a compact subset S1 C S with A\(S\S1) < €

such that the restriction of f to S1 is continuous.

2. Michael’s continuous selection theorem: Let S be a metrizable space, and X a
complete metrizable closed subset of some locally convex space. Suppose that
F: S — X is a lower hemicontinuous, nonempty, convex and closed valued
correspondence. Then there exists a continuous mapping f: S — X such that
f(s) € F(s) foralls e S.

3. Let (S,S8,)) be a finite measure space, X a Polish space, and Y a locally
convez linear topological space. Let F': S — X be a closed-valued corre-
spondence such that Gr(F) € S ® B(X), and f: Gr(F) — Y a measurable
function which is sectionally continuous on X . Then there exists a measurable

function f': S x X — Y such that (1) f’ is sectionally continuous on

35Given a correspondence F': X — Y and a subset A of X, the image of A under F is defined to be
the set Uzea F(z).
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X, (2) for M-almost all s € S, f'(s,x) = f(s,x) for all x € F(s) and
F(5,X) C cof (s, F(s))-%

4. Let (S,S) be a measurable space, and X andY Polish spaces. Let ¥: Sx X —
M(Y) be an S ® B(X)-measurable, nonempty, convexr and compact valued
correspondence which is sectionally continuous on X, where the compactness
and continuity are with respect to the weak™ topology on M(Y'). Then there

exists an S @ B(X)-measurable selection v of ¥ that is sectionally continuous
on X.

Proof. Lusin’s theorem is Theorem 7.1.13 in Bogachev (2007). Michael’s contin-
uous selection theorem can be found in Michael (1966) and the last paragraph
of page 228 of Bogachev (2007). Properties (3) is Theorem 2.7 in Brown and
Schreiber (1989). Property (4) follows from Theorem 1 and the main lemma of
Kucia (1998). O

The following lemma presents the convexity, compactness and continuity

properties on integration of correspondences.

Lemma 4. Let (S,S,\) be an atomless probability space, X a Polish space, and

F a correspondence from S to R'. Denote

/ F(s)\(ds) = {/ f(s)\(ds): f is an integrable selection of F' on S} .
S S

1. If F' is measurable, nonempty and closed valued, and A\-integrably bounded by
some integrable function ¥ : S — Ry in the sense that for A-almost all s € S,
lyll < 1(s) for any y € F(s), then [¢F(s)\(ds) is nonempty, convex and

compact, and

/S F(s)\(ds) = / coF (s)A(ds).

S

2. If G is a measurable, nonempty and closed valued correspondence from S x
X — R such that (1) G(s,-) is upper (resp. lower) hemicontinuous on X
forall s € S, and (2) G is A-integrably bounded by some integrable function
: S — Ry in the sense that for A-almost all s € S, ||y|| < ¥(s) for anyx € X
and y € G(s,x), then [¢G(s,z)A(ds) is upper (resp. lower) hemicontinuous
on X.

Proof. See Theorems 2, 3 and 4, Propositions 7 and 8, and Problem 6 in
Section D.I1.4 of Hildenbrand (1974). O

The following result proves a measurable version of Lyapunov’s theorem, which
is taken from Mertens (2003). Let (S5,S) and (X, X) be measurable spaces. A

36For any set A in a linear topological space, coA denotes the convex hull of A.
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transition probability from S to X is a mapping f from S to the space M(X) of
probability measures on (X, X') such that f(B|-) : s = f(B|s) is S-measurable for
each B € X.

Lemma 5. Let f(-|s) be a transition probability from a measurable space (S,S)
to another measurable space (X, X) (X is separable).’” Let Q be a measurable,
nonempty and compact valued correspondence from S x X to R!, which is f-
integrable in the sense that for any measurable selection q of Q, q(s,-) is f(:|s)-
absolutely integrable for any s € S. Let [ Qdf be the correspondence from S to
subsets of R defined by

M(s) = (/Qdf) (s) = {/X q(s,z)f(dz|s): q is a measurable selection of Q}.

Denote the graph of M by J. Let J be the restriction of the product o-algebra
S @ B(RY) to J.
Then

1. M 1is a measurable, nonempty and compact valued correspondence;

2. there exists a measurable, R'-valued function g on (X x J,X ® J) such that
g(x,e,5) € Q(a,s) and e = [ g(x, e, ) f(dals).

The proof of Lemma 6 in Reny and Robson (2002) leads to the following result.

Lemma 6. Suppose that H and X are Polish spaces. Let P: H x X — R"™ be a
measurable, and nonempty and compact valued correspondence, and the mappings
frH— M(X) and p: H — A(X) be measurable, where A(X) is the set of all
finite Borel measures on X . In addition, suppose that u(-|h) = p(h,-)o f(-|h) such
that p(h,-) is a measurable selection of P(h,-) for each h.>® Then there exists a
jointly Borel measurable selection g of P such that u(-|h) = g(h,-)o f(:|h); that is,
g(h,z) = p(h,x) for f(:|h)-almost all x.

Suppose that (S7,81) is a measurable space, Sy is a Polish space endowed with
the Borel o-algebra, and S = S x S5 which is endowed with the product o-algebra
S. Let D be an S-measurable subset of S such that D(s;) is compact for any
s1 € S1. The o-algebra D is the restriction of S on D. Let X be a Polish space,
and A a D-measurable, nonempty and closed valued correspondence from D to X
which is sectionally continuous on S3. The following lemma considers the property

of upper hemicontinuity for the correspondence M as defined in Lemma 5.

3TA g-algebra is said to be separable if it is generated by a countable collection of sets.
#8The finite measure p(-|h) = p(h,-) o f(:|h) if u(E|h) = [, p(h,z)f(dz|h) for any Borel set E.
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Lemma 7. Let f(-|s) be a transition probability from (D,D) to M(X) such that
f(A(s)|s) =1 for any s € D, which is sectionally continuous on Sy. Let G be a
bounded, measurable, nonempty, conver and compact valued correspondence from
Gr(A) to R!, which is sectionally upper hemicontinuous on Sz x X. Let JGAf be
the correspondence from D to subsets of R' defined by

M(s) = ( / Gdf> (s) = { /X (s, ) f(dz|s): g is a measurable selection of G} .

Then M is S-measurable, nonempty and compact valued, and sectionally upper

hemicontinuous on Ss.

Proof. Define a correspondence G: S x X — Rl as

- G(s,x), if (s,x) € Gr(A);

{0}, otherwise.

Then M(s) = (fédf) (s) = ([ Gdf) (s). The measurability, nonemptiness and
compactness follows from Lemma 5. Given s; € Sp such that (1) D(s1) # 0,
(2) f(s1,-) and G(s1,-,-) is upper hemicontinuous. The upper hemicontinuity of
M (s1,-) follows from Lemma 2 in Simon and Zame (1990) and Lemma 4 in Reny
and Robson (2002). O

From now onwards, whenever we work with mappings taking values in the
space M (X)) of Borel probability measures on some separable metric space X, the
relevant continuity or convergence is assumed to be in terms of the topology of
weak convergence of measures on M(X) unless otherwise noted.

In the following lemma, we state some properties for transition correspondences.

Lemma 8. Suppose that Y and Z are Polish spaces. Let G be a measurable,
nonempty, convex and compact valued correspondence from'Y to M(Z). Define a
correspondence G' from M(Y) to M(Z) as

G'(v) = {/Y g(y)v(dy): g is a Borel measurable selection of G} 39

1. The correspondence G' is measurable, nonempty, conver and compact valued.

2. The correspondence G is upper hemicontinuous if and only if G' is upper

hemicontinuous. In addition, if G is continuous, then G’ is continuous.

39The integral Jy 9(y)v(dy) defines a Borel probability measure 7 on Z such that for any Borel set C
in Z, 7(C) = [ 9(y)(C)v(dy). The measure 7 is also equal to the Gelfand integral of g with respect to
the measure v on Y, when M(Z) is viewed as a set in the dual space of the space of bounded continuous
functions on Z; see Definition 11.49 of Aliprantis and Border (2006).
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Proof. (1) is Lemma 19.29 of Aliprantis and Border (2006). By Theorem 19.30
therein, G is upper hemicontinuous if and only if G’ is upper hemicontinuous. We
need to show that G’ is lower hemicontinuous if G is lower hemicontinuous.

Let Z be endowed with a totally bounded metric, and U(Z) the space of
bounded, real-valued and uniformly continuous functions on Z endowed with the
supremum norm, which is obviously separable. Pick a countable set {fm,}m>1 C
U(Z) such that { f,,} is dense in the unit ball of U(Z). It follows from Theorem 15.2
of Aliprantis and Border (2006) that the weak* topology of M(Z) is metrizable by

the metric d,, where

L) = 3 g | [ (@) = [ pteipatas
m=1

for each pair of p1, pe € M(Z).

Suppose that {v;};>0 is a sequence in M(Y") such that v; — vy as j — oo.
Pick an arbitrary point g € G'(1p). By the definition of G’, there exists a Borel
measurable selection g of G such that puo = [, g(y)vo(dy).

For each k£ > 1, by Lemma 3 (Lusin’s theorem), there exists a compact subset
Dy C Y such that g is continuous on Dy and (Y \ Di) < ﬁ Define a
correspondence Gi: Y — M(Z) as follows:

{9(W)}, y € Dy;

Gr(y) =
G(y), yeY\ Dy

Then G} is nonempty, convex and compact valued, and lower hemicontinuous.
By Theorem 3.22 in Aliprantis and Border (2006), Y is paracompact. Then by
Lemma 3 (Michael’s selection theorem), it has a continuous selection gy.

For each k, since v; — vy and g, is continuous, [y gx(y)v;(dy) = [, gx(y)ro(dy)

in the sense that for any m > 1,

/Y /Z fm(2)gk(d2ly)v;(dy) — /Y /Z Fn(2)gie(dz|y)vo(dy).

Thus, there exists a point v, such that {j} is an increasing sequence and

([ atwmitan. [ amian) < g

In addition, since gy coincides with g on Dy and vo(Y \ D) < ?%k,
2
d: (| gWro(dy), | g(y)ro(dy) ) < o
Y Yy 3k
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Thus,

([ atwwictan. [ stmian) < 1.

Let p15, = [y 91(y)vj, (dy) for each k. Then pj, € G'(v;,) and pj, — po as k — oc.
By Lemma 1, G’ is lower hemicontinuous. O

The next lemma presents some properties for the composition of two transition

correspondences in terms of the product of transition probabilities.

Lemma 9. Let X, Y and Z be Polish spaces, and G a measurable, nonempty and
compact valued correspondence from X to M(Y'). Suppose that F' is a measurable,
nonempty, convex and compact valued correspondence from X XY to M(Z). Define

a correspondence I1 from X to M(Y x Z) as follows:

I(z) = {g(z) o f(x): g is a Borel measurable selection of G,

f is a Borel measurable selection of F'}.

1. If F is sectionally continuous on Y, then Il is a measurable, nonempty and

compact valued correspondence.

2. If there ezists a function g from X to M(Y') such that G(x) = {g(z)} for any

x € X, then 1l is a measurable, nonempty and compact valued correspondence.

3. If both G and F' are continuous correspondences, then Il is a nonempty and

compact valued, and continuous correspondence.*’

4. If G(x) = {\} for some fized Borel probability measure A € M(Y) and F is
sectionally continuous on X, then Il is a continuous, nonempty and compact

valued correspondence.

Proof. (1) Define three correspondences F': X xY — M(Y x Z), F: M(X xY) —
MY x Z)and F: X x M(Y) = M(Y x Z) as follows:

Fa,y) = {0y ® p: p € F(x,y)},

F(r) = {/ f(z,y)7(d(z,y)): f is a Borel measurable selection of Z*:'} ,
XxY

Fa,p) = F(6; ® p).

Since F' is measurable, nonempty, convex and compact valued, F' is measurable,

nonempty, convex and compact valued. By Lemma 8, the correspondence F is

40In Lemma 29 of Harris, Reny and Robson (1995), they showed that II is upper hemicontinuous if
both G and F' are upper hemicontinuous.
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measurable, nonempty, convex and compact valued, and F(z,-) is continuous on
M(Y) for any xz € X.

Since G is measurable and compact valued, there exists a sequence of Borel

measurable selections {gi}r>1 of G such that G(z) = {g1(x), g2(x),...} for any
z € X by Lemma 2 (5). For each k > 1, define a correspondence II* from X to
M(Y x Z) by letting IT¥ () = F(z, gr(x)) = F(3,@gx(x)). Then IT* is measurable,
nonempty, convex and compact valued.

Fix any 2 € X. It is clear that II(z) = F(z, G(x)) is a nonempty valued. Since
G(x) is compact, and F(z,-) is compact valued and continuous, II(x) is compact
by Lemma 2. Thus, the closure -, IT*(z) of s, IT¥(z) is a subset of TI(z).

Fix any x € X and 7 € H(x)_ There exists a point v € G(z) such that
7 € F(x,v). Since {gi(x)}x>1 is dense in G(z), it has a subsequence {gz,, ()}
such that g, (z) — v. As F(xz,-) is continuous, F(z, gy, (x)) — F(z,v). That is,

T € U F(x, gr(x)) = U 1% ().

k>1 E>1

Therefore, |J;», IT¥(z) = TI(z) for any x € X. Lemma 2 (1) and (2) imply that I

is measurable.

(2) As in (1), the correspondence F' is measurable, nonempty, convex and
compact valued. If G = {g} for some measurable function g, then II(z) =

~

F(d; ® g(z)), which is measurable, nonempty and compact valued.

(3) We continue to work with the two correspondences F': X xY — M(Y x Z)
and F': M(XxY) = M(Y x Z) as in Part (1). By the condition on F, it is obvious
that the correspondence F is continuous, nonempty, convex and compact valued.
Lemma 8 implies the properties for the correspondence F. Define a correspondence
G: X - M(X xY) as G(z) = 6, ® G(x).** Since G and F' are both nonempty
valued, II(z) = F(G(x)) is nonempty. As G is compact valued and F is continuous,
IT is compact valued by Lemma 2. As G and F are both continuous, II is continuous
by Lemma 1 (7).

(4) Let Y’ = Y and define a correspondence F': X xY — M(Y’ x Z) as follows:

9]

F(z,y) =6y ® F(z,y) = {0, ® pu: p € F(z,y)}.

Then F is also measurable, nonempty, convex and compact valued, and sectionally

41Given a finite measure v on X and a set D of finite measures on Y, v ® D denotes the set of finite
measures {v @ u : u € D}.
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upper hemicontinuous on X.

Let d be a totally bounded metric on Y’ x Z, and U(Y' x Z) the space of
bounded, real-valued and uniformly continuous functions on Y’ x Z endowed with
the supremum norm, which is obviously separable. It follows from Theorem 15.2 of
Aliprantis and Border (2006) that the space of Borel probability measures on Y’ x Z
with the topology of weak convergence of measures can be viewed as a subspace
of the dual space of U(Y' x Z) with the weak™ topology. By Corollary 18.37 of
Aliprantis and Border (2006), II(z) = [, F(x,y)A(dy) is nonempty, convex and
compact for any z € X.*?

Now we shall show the upper hemicontinuity. If z, — z¢ and p, € II(z,), we
need to prove that there exists some pg € II(zg) such that a subsequence of {u,}
weakly converges to pg. Suppose that for n > 1, f,, is a Borel measurable selection
of F(xy,-) such that p, = Ao fp.

Fix any y € Y, let J(y) = ¢o{ fn(y) ® 0z, }n>1, which is the closure of the convex
hull of { f,(y) ® 0z, }n>1. It is obvious that J(y) is nonempty and convex. It is also
clear that J(y) is the closure of the countable set

n n
{Zalfl(y)®5$z tn 2> 1, €Q+7i: 1""7nazai = 1}7
=1 i=1

where Q4 is the set of non-negative rational numbers. Let F'(z) = {u ® d, :
p € F(x,y)} for any x € X. Then, F’ is continuous on X. Since {z, : n >
0} is a compact set, Lemma 2 (6) implies that |J,,~o F'(zn) is compact. Hence,
{fn(y) ® 0z, }n>1 is relatively compact. By Theorem 5.22 of Aliprantis and Border
(2006), { fn(y) ® 0z, }n>1 is tight. That is, for any positive real number e, there is a
compact set K, in Z x X such that for any n > 1, f,(y) ® d,, (K.) > 1 —e. Thus,
Yo aifi(y) ® 0q; (Ke) > 1 —€ for any n > 1, and for any o; € Q4, i =1,...,n
with Y7, a; = 1. Hence, J(y) is compact by Theorem 5.22 of Aliprantis and
Border (2006) again.

For any n > 1, and for any o; € Q4, i =1,...,n with >" | oy = 1, it is clear
that > ;" | @i fi(y) ® 0, is measurable in y € Y. Lemma 2 (5) implies that J is
also a measurable correspondence from Y to M(Z x X). By the argument in the

second paragraph of the proof of Part (4), the set
A ={A\o(: ( is a Borel measurable selection of J}

is compact.

Since Ao (f, ®0d,, ) € A for each n, there exists some Borel measurable selection

“2Note that the integral [, F(x,y)A(dy) can be viewed as the Gelfand integral of the correspondence
in the dual space of U(Y’ x Z); see Definition 18.36 of Aliprantis and Border (2006).
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¢ of J such that a subsequence of {\ ¢ (f, ® d,,,)}, say itself, weakly converges to
Ao € A. Let (x(y) be the marginal probability of ((y) on X for each y. Since x,,
converges to g, (x (y) = g, for A-almost all y € Y. As a result, there exists a Borel
measurable function fp such that ( = fy ® d5,, where fo(y) € coLs,{fn(y)} for A-
almost all y € Y. Since F' is convex and compact valued, and upper hemicontinuous
on X, fo is a measurable selection of F'(zg,-). Let up = Ao fo. Then p, weakly
converges to g, which implies that II is upper hemicontinuous.

Next we shall show the lower hemicontinuity of II. Suppose that x,, — zo and
po € I(xg). Then there exists a Borel measurable selection fy of F'(z, -) such that
1o = Ao fo. Since F is sectionally lower hemicontinuous on X and compact valued,
for each n > 1, there exists a measurable selection f,, for F(xy, ) such that f,(y)
weakly converges to fo(y) for each y € Y.*3 Denote p, = Ao f,,. For any bounded
continuous function ¢ on Y x Z, [, 1(y, z) fn(dz|y) converges to [, 9(y, z) fo(dz|y)
for any y € Y. Thus, we have

(Y, 2)in(dy, 2)) = /Y /Z By, 2) Fu(dz]y) Mdy)
5 /Y /Z (5, 2) fo(dzly) A(dy)

YxZ

by the Dominated Convergence Theorem. Therefore, Il is lower hemicontinuous.

The proof is thus complete. O

The following lemma is taken from Simon and Zame (1990) (see also Lemma 4

in Reny and Robson (2002)).

1. S and Y are Polish spaces, D is a closed subset of S x Y, where D(s) is
compact for all s € S;

2. X = ngign X;, where each Xj; is a Polish space;

3. for each i, A; is a nonempty and compact valued, continuous correspondence
from D to X;, A =[] <<, Ai and E = Gr(4);

4. P is a bounded, nonempty, convex and compact valued, upper hemicontinu-

ous correspondence from F to R™.

Lemma 10. Consider the correspondence ®: D — R" x M(X) x A(X) defined
as follows: (v,a, ) € ®(s,y) if p is a selection of P such that p(s,y,-) is Borel

measurable for any (s,y), and

1. v= pr(s,y,w)a(da?);

43Gee Proposition 4.2 in Sun (1997). Note that the atomless Loeb probability measurable space
assumption is not needed for the result of lower hemicontinuity as in Theorem 10 therein.
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2. a € ®ietM(Ai(s,y)) is a Nash equilibrium in the subgame (s,y) with payoff
profile p(s,vy,-), and action space A;(s,y) for each player i;

3. 1% :p(s,y, ) ° .

Then ® is nonempty and compact valued, and upper hemicontinuous on D.

6.2 Proof of Theorem 1
6.2.1 Backward induction

As explained in Section 4.3, the backward induction step aims to show that some
desirable properties of the equilibrium payoff correspondences can be preserved
when one works backwards along the game tree.

Given t > 1, let Q¢+1 be a bounded, nonempty and compact valued, and
upper hemicontinuous correspondence from H; to R™. For any h,—1 € Hy;_1 and
xt € Ag(hi—1), let

Py(hi—1,2¢) = Qey1(hi—1, 21, 5¢) fro(dse|he—1).
St
Since fio(-|ht—1) is atomless and Q41 is nonempty and compact valued, by

Lemma 4,

Pt(ht—l,ﬂft) Z/ COQt+1(ht—17$t7St)fto(dSt’ht—1)7

St

where coQyy1(hi—1, 2, ¢) is the convex hull of Qu1(h¢—1,x¢, ;). By Lemma 4,
P, is bounded, nonempty, convex and compact valued. To show that P, is upper
hemicontinuous on Gr(A), by Lemma 1 (5), it is sufficient to show that P; is upper
hemicontinuous on {(h¥ |, 2¥)} x>0, where {(hF_|, 2F)}r>0 is a sequence such that
(hF 1 2F) — (W)_1,29) as k — oo. Note that {(hf_;,2¥)}r>0 is indeed a compact
set. Then the upper hemicontinuity of P; on {(h¥_;, 2¥)} x>0 follows from Lemma 7.

By Lemma 10, there exists a bounded, measurable, nonempty and compact
valued correspondence ®; from H;_; to R™ x M(X;) x A(X;) such that ®; is
upper hemicontinuous, and for all hy—1 € Hi—1, (v,a,pu) € $i(hi—1) if p; is a

selection of P such that p;(hi—1,-) is Borel measurable, and
1. v= fAt(htil)pt(ht_l,a;)a(dm);
2. a € ®jegM (A4 (hi—1)) is a Nash equilibrium in the subgame h;—; with payoff
pi(hi—1,-) and action space [],c; As(hi—1);
3. p=pt(hi—1,) o .
Denote the restriction of ®; on the first component R as ®(Q+1), which is a

correspondence from H;_1 to R™. By Lemma 10, ®(Q¢+1) is bounded, nonempty

and compact valued, and upper hemicontinuous.

37



6.2.2 Forward induction

If one views @; as some payoff correspondence for the players in stage t,
then the correspondence ®; obtained in the backward induction step collects
all the equilibrium strategies, the corresponding payoff vectors and the induced
probabilities in stage ¢ — 1. The issue here is that one needs to construct jointly
measurable payoff functions (as selections of ;) and strategy profiles in stage ¢
which induce the equilibrium payoffs in ®;. This is done in the forward induction

step. Specifically, we shall prove the following proposition.

Proposition 3. For anyt > 1 and any Borel measurable selection q; of ®(Q¢+1),
there exists a Borel measurable selection qi+1 of Qi+1 and a Borel measurable
mapping fi: Hi—1 — QijcrM(Xy) such that for all hy—y € Hy_q,

1. ft(ht—l) € ®ielM(Ati(ht—1));
2. qi(hi—1) = fAt(ht—l) [s, @r+1(Pa—1, 2, 5¢) fro(dse|he—1) fe(dae|he—1);

3. fi(-|hi=1) is a Nash equilibrium in the subgame hy—1 with action spaces
{A4i(hi—1) }ier and the payoff functions

/S Qt+1(ht—17',St)fto(dst\ht—l).

Proof. We divide the proof into three steps. In step 1, we show that there exist
Borel measurable mappings f;: Hi—1 — ®;crM(Xyi) and py: Hi—1 — A(Xy) such
that (g, fr, pue) is a selection of ®;. In step 2, we obtain a Borel measurable selection
g of P; such that for all hy_1 € H;_1,

1. qt(ht—l) = fAt(htfl) gt(ht—lain)ft(dx’ht—l);

2. fi(hy—1) is a Nash equilibrium in the subgame h;_; with payoff g;(h;—1,-) and

action space Ay(hs_1).%*

In step 3, we show that there exists a Borel measurable selection ¢y41 of Q1 such
that for all hy_1 € H;_1 and x; € At(ht—l),

gt<ht—17xt):/s Qi+1(he—1, e, 5¢) fro(dse|hi—1).
t

Combining Steps 1-3, the proof is complete.
Step 1. Let U;: GI‘(‘I)(Qt_;,_l)) — M(Xt) X A(Xt) be

‘Ilt(ht—lvv) - {(anu): (v,a,,u) € (I)t(ht—l)}'

440ne cannot simply use p; in the previous subsection instead of g; here. Note that p; may not be
jointly Borel measurable in (h;—1,x) even though p;(h;—1,-) is Borel measurable for each fixed h;_1.
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For any {(hF ;,v*)}1<k<oo € Gr(®(Q¢41)) such that (hF ;,v*) converges to
(h$° 1, v™>®), pick (¥, *) such that (vF,a®, u¥) € @ (hF ;) for 1 < k < co. Since
®; is upper hemicontinuous and compact valued, there exists a subsequence of
(v*, aF, u¥), say itself, such that (v¥, ¥, u¥) converges to some (v, a>, u>) €
®;(hg°,) due to Lemma 1 (5). Thus, (a™, u>) € Vi(h,,v>), which implies that
¥, is also upper hemicontinuous and compact valued. By Lemma 2 (3), ¥; has a
Borel measurable selection ;. Given a Borel measurable selection ¢, of ®(Q¢1), let
dt(hi—1) = (qt(he—1), e (he—1,q:(ht—1))). Then ¢; is a Borel measurable selection
of ®;. Let f; and p; be the second and third dimension of ¢, respectively. By the

construction of &, for all hy_; € Hy_1,

L g(h—r) = fAt(ht,l)pt(ht*h:L‘)ft(dl'|ht*1) such that py(hi—1,-) is a Borel
measurable selection of Py(hi—1,-);

2. fi(hi—1) € ®icrM(Agi(he—1)) is a Nash equilibrium in the subgame h;_1 with
payoff p;(hi—1,-) and action space [[;c; Ati(hi—1);

3. ,ut("ht—l) = pe(he-1,") o fi(-|hi—1).

Step 2. Since P; is upper hemicontinuous on {(hi—1,z): hy—1 € Hy_1,24 €
Ay(hi—1)}, due to Lemma 6, there exists a Borel measurable mapping ¢ such that
(1) g(ht—1,2) € Py(hy—1,2) for any hy—q € Hy—y and z; € Ay(hi—1), and (2)
g(hi—1, ) = pr(he—1, x¢) for fi(-|hi—1)-almost all x;.

In a subgame h;_1 € H;_1, let

Byi(hi—1) = {yi € Ai(hs—1):

/ gi(ht—lvyivxt(fi))ft(fi)(dxt(fi)‘ht—l) > / pi(hi—1, 2¢) fe(dwe|hg 1) }.
Ag(—iy(hi-1) Ai(he-1)

Since g(htfl, .’Et) == Pt(ht—laft) for ft(-|ht,1)—almost all T,

Ag(he—1)

/ ( )g(htlalvt)ft(dﬂfﬂhtl):/ pe(hi—1, x¢) fr(day|he—1).
Ai(hi—1

Thus, By; is a measurable correspondence from Hy_j to Ay (hi—1). Then By; has
a Borel measurable graph. As f;(h;—1) is a Nash equilibrium in the subgame
hi—1 € H;_y with payoff pi(hi—1,-), fui(Bgi(hi—1)|hi—1) = 0.

Denote f;(hi—1,x;) = min Py(hy—1,x¢), where Py(hi—1,x¢) is the projection
of Pi(hi—1,x¢) on the i-th dimension. Then the correspondence P is mea-
surable and compact valued, and ; is Borel measurable. Let A;(hi—1,2;) =
{Bi(ht—1,71)} x [0,74]"', where v > 0 is the upper bound of P,. Denote
A(hi—1,x¢) = Ni(he—1,2¢) N Pp(hi—1,2¢). Then Al is a measurable and compact
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valued correspondence, and hence has a Borel measurable selection ;. Note that

3} is a Borel measurable selection of P;. Let
gi(ht—1,2¢) =

Bi(hi—1,x¢) if hy—y € Hy_1, x4 € Byi(hy—1) and x4 ¢ Byj(hi—1),Vj # 4
g(hi—1,2¢)  otherwise.

Note that
{(ht—1,2¢) € Gr(Ay): hy—1 € Hy_1,24 € Byi(hy—1) and x4 ¢ Byj(hy—1),Vj # 05}

— Gr(A)) N Uier [ (Gr(Bu) x [T Xi) \ (Upsa(Ge(Boy) x [ Xu)) | -
J# k#j
which is a Borel set. As a result, g; is a Borel measurable selection of P;. Moreover,
gt(hi—1,x) = pr(hi—1,2¢) for all hy—y € Hy—1 and fi(-|h¢—1)-almost all xy.
Fix a subgame h;_; € H;_;. We will verify that f;(:|h;—1) is a Nash equilibrium
given the payoff g;(h;—1,-) in the subgame h;_1. Suppose that player i deviates to
some action Ty;.

If Z4; € Byi(hi—1), then player i’s expected payoff is

/ Gti(ht—1, Tti, Ty(—4)) fi(—i) (AT (i) | Pt—1)
A=) (he-1)

ti(he—1, Tei, To(—iy) fo(—a) (g (i) | he—1)
g Bij(he=1)

:>\:1\:1\:1\

B(ht laxtlaxt( z))ft (dxt ’ht 1)
i Bij(he-1)

< pri(hi- 1 Ttiy Ty(— z)ft (dxt z)‘ht 1)
i1 Bij(he-1)

= Pei(hi— 17«Tt17xt )ft (df/Ut( 1)‘ht 1)
t(—i)(ht—1)

S/A Pri(he—1, 2¢) fe(dwe|he—1)

t(ht—1)

= / Gti(he—1, z¢) fr(da| he—1).
A¢(he—1)

The first and the third equalities hold since f;;(B¢j(ht—1)|he—1) = 0 for each j,
and hence fyi)(I]; Bfj(hu—1)|Pi—1) = fo—i)(As(—iy(he-1)|he—1). The second
equality and the first inequality are due to the fact that gu(hi—1,Tu, o)) =
Bi(ht—1, Tti, vy(—s)) = min Py(he—1, Tei, Ty—i)) < prilhie—1, Tei, Ty—y)) for ) €
[1;.2; Bf;(ht—1). The second inequality holds since f(-[h¢—1) is a Nash equilibrium
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given the payoff p;(hi—1,-) in the subgame h;—1. The fourth equality follows from
the fact that g¢(hi—1,z¢) = pi(hi—1,x¢) for fi(-|hi—1)-almost all xy.
If Z4; ¢ Byi(hi—1), then player i’s expected payoft is

/ gri(he— 1,$tz,$t( z))ft (dxt ’ht 1)
Ag(—gy(he=1)

Il
;;\:1\3\

gti(ht—1, Tti, Ty(—4)) fi(—i) (ATy(—5)| P—1)

ji Bej(he—1)

Gi(ht—1, Ttis Ty —i)) fe(—iy (dmy—iy | he—1)
j#i Bij(hi-1)

9i(ht—1, Tti, Ty(—i)) fo(—iy (dmy—iy | he-1)

t(—4) (ht—1)

pti(htfb xt)ft(dlﬁtmtfl)
t(ht—1)

= / gti(htfla fl‘t)ft(dl'tmtfl)-
At(hi—1)

<

—

The first and the third equalities hold since

Frey | TI B6i(he-)lher | = frei(Asmiy (he—1)hea).
J#

The second equality is due to the fact that gi(hi—1, Tti, Ty(—s)) = gi(ht—1, Ttis Ty—s))
for 4 € [, Bfj(hi—1). The first inequality follows from the definition of By;,
and the fourth equality holds since g;(hi—1,x) = pi(hi—1, z¢) for fi(-|hs—1)-almost
all ;.

Thus, player ¢ cannot improve his payoff in the subgame h; by a unilateral
change in his strategy for any i € I, which implies that fi(-|ht—1) is a Nash
equilibrium given the payoff g;(h;—1,-) in the subgame h;_1.

Step 3. For any (hy—1,x;) € Gr(A),
Py(hi—1,2¢) = /S Qev1(hi—1, 21, 5¢) fro(dse|he—1).

By Lemma 5, there exists a Borel measurable mapping ¢ from Gr(P;) x S; to R"
such that

1. q(ht—1,x¢,€,8t) € Qer1(he—1, ¢, 5¢) for any (hi—1, 24, €, 5¢) € Gr(P;) x Si;

2. e = [g a(hi—1, 21, ,5) fro(ds|hy—1) for any (hi—1,24,e) € Gr(P), where
(ht_1,$t) S GI‘(At)
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Let
Qi1 (he—1, ¢, 50) = q(he—1, T4, ge(hi—1, 1), 5t)

for any (hy—1,x¢,s¢) € Hy. Then gi41 is a Borel measurable selection of Q¢41.
For (hi—1, ) € Gr(Ay),

gt(ht—hfvt):/s q(hi—1, ¢, g (he—1, xt), s¢) fro(dse|he—1)

Z/S Qi+1(he—1, 4, 5¢) fro(dse|hi—1).
t

Therefore, we have a Borel measurable selection ¢;11 of Q¢+1, and a Borel
measurable mapping fi: Hi—1 — ®;efM(Xy;) such that for all hyy € Hyq,
properties (1)-(3) are satisfied. The proof is complete. O

If a dynamic game has only T stages for some positive integer T' > 1, then let
Qr41(hr) = {u(hr)} for any hy € Hy, and Q; = ®(Qs41) for 1 <t < T —1. We
can start with the backward induction from the last period and stop at the initial
period, then run the forward induction from the initial period to the last period.

We obtain the following corollary.

Corollary 1. If a finite-horizon continuous dynamic game with almost perfect
information satisfies the condition of atomless transitions, then it has a subgame-

perfect equilibrium.*®

6.2.3 Infinite horizon case

Pick a sequence £ = (&1,&2,...) such that (1) &, is a transition probability from
Hp,—1 to M(X,,) for any m > 1, and (2) &n(Am(hm—1)|hm—1) =1 for any m > 1
and h,,_1 € H,,_1. Denote the set of all such & by T. Intuitively, £ can be viewed
as a correlated strategy profile with each & being the correlated strategy in stage ¢,
and T is the set of all such correlated strategies.

Fix any ¢ > 1, define a correspondence Al as follows: in the subgame h;_1,
Af(hi—1) = M(A(hi-1)) @ fro(hs—1).

Then Al(hy_1) is the set of probability measures on the space of action profiles of
stage t, which is induced by all the possible correlated strategies among the active
players and Nature’s move in the subgame h;_1. Inductively, we shall define the
set of possible paths for correlated strategies in any subgame between stages ¢ and

my for t < my < oo.

45The condition of atomless transition is not needed at the last stage.
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For any integer m; > t, suppose that the correspondence Alm_l has been
defined. The correspondence Ay : Hy_3 — M (Ht<m<m1 (Xm % Sm)> is defined

as follows:

AP (h—1) ={g(ht—1) © (§my (he—1,7) @ fmyo(hi-1,-)):
g is a Borel measurable selection of Aqtm*l,

&m, 1s a Borel measurable selection of M(A,,,)},

where the correspondence M(A,,,) takes value M (An, (hm,—1)) at subgame
hm,—1. For any m; > t, let 92217175) € AJ" be the probability measure on
[Li<m<m, (Xm X Sp) induced by Nature’s moves { fn0}t<m<m, and the correlated
str;teéies {&m}t<m<m,. Then Q?}lli—lvé) is a possible path induced by £ in the
subgame h;_1 before stage mq, and Ay (hy—1) is the set of all such possible paths
Q?fg,l,g) in the subgame h;_;. Note that 97(71171,5) can be regarded as a probability
measure on Hy, (hi—1) = {(z, Sty s Tmyy Smy) ¢ (hi—1, Tty Sty ooy Ty s Smy) €
Hy,, }. Similarly, let o, ¢) be the probability measure on [[,,~(Xm X Sp)
induced by Nature’s moves { fio}m>+ and the correlated strategies {&m, }m>t after

the subgame h;—;. The correspondence

Ay Hi oy — M(H(Xm X Sm))

m>t

collects all the possible paths o, , ¢)-

We shall show that the correspondence Ay(hy—1), which contains all the possible
paths induced by correlated strategies in the subgame h; 1, is nonempty and
compact valued, and continuous. The claim is proved by showing that A}"' has

such properties, and A; can be approximated by Ay when m; is sufficiently large.

Lemma 11. 1. For any t > 1, the correspondence AJ"' is nonempty and

compact valued, and continuous for any mi > t.

2. For any t > 1, the correspondence Ay is nonempty and compact valued, and

continuous.

Proof. (1) Consider the case m; =t > 1, where
A (hi-1) = M(Ai(hi-1)) @ fio(hi-1)-

Since A; is nonempty and compact valued, and both A; and fiy are continuous,
A" is nonempty and compact valued, and continuous.

Suppose that Aj"? is nonempty and compact valued, and continuous for some
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mg >t > 1. Note that

AT (1) ={g(h-1) © (Emy1(he-1,) @ fimas1y0(he-1,)):
g is a Borel measurable selection of A2,

Emo+1 18 a Borel measurable selection of M(A,,+1)}-

By Lemma 9 (3), A?”H is nonempty and compact valued, and continuous.

(2) It is obvious that A; is nonempty valued, we shall first prove that it is upper
hemicontinuous and compact valued.

Given sequences {h¥ |} and 7% C A;(hF_,), there exists a sequence of {¢¥};>;
such that &8 = (¢F,¢5,..) € T and 7% = O(hk_, &%) for each & > 1. Suppose that
hF | — h$°,. By (1), Alis compact valued and upper hemicontinuous. Then there
exists a measurable mapping g; such that (1) ¢* = (&1,. .. ,ftlfl,gt,ftlﬂ, ) ET,

¢ ¢
and (2) a subsequence of {Q(hf_l,ék)}’ say {Q(hfill,gku)}lzl’ weakly converges to

leh,?il,gt)' Note that {¢F,;} is a Borel measurable selection of M(A4;41). By

Lemma 9 (3), there is a Borel measurable selection g;41 of M(A¢y1) such

. t+1 t+1
that there is a subsequence of {Q(hfﬂl,g’fu)}lzl’ say {Q(hfﬁll,gkzz)}lzl’ weakly
1
converges to Q'Ezfipgtﬂ), where ¢t = (511,...,§t171,gt,gt+1,£tl+2,...) e T.

Repeat this procedure, one can construct a Borel measurable mapping g such

that o weakly converges to 0(hse ,.9)- That is,

(i ghn) Oy ghan) O(nyss ghas)
O(nse,.g) 18 a convergent point of {Q(hf,lﬁ’“)}’ By Lemma 1 (5), A; is compact
valued and upper hemicontinuous.

Next, we consider the lower hemicontinuity of A¢. Suppose that 79 € A¢(hY_;).

i €
(hY_1:)
AT(RY ;) for m >t. As AT is continuous, for each m, there exists some ™ € T

such that d(g?};km gm),%m) < % for k,, sufficiently large, where d is the Prokhorov
t—1>

metric. Let 7 = 9

Then there exists some £ € T such that 70 = O(n9_, £)- Denote 7™ = o

phm, emy- Then 7 weakly converges to 7°, which implies that

A; is lower hemicontinuous. O

Below, we shall define a correspondence Q7 from H; 1 to R’ , inductively for
any stages t,7 > 1. When 7 < t, Q7 (hy—1) is the set of all the payoffs based on
correlated strategies in the subgame h;_1, which does not depend on 7. As a result,
for any stage 7, Q7. can be defined. Then for 7 > ¢, Q7 is the correspondence
obtained by repeating the backward induction from the correspondence QT ;.

Specifically,
Q7 (hi—1) =
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U sy w12, 8)o(n, 1 ) (A, 9)): o, 1) € Delhu-1)} 7 <1;
@(Q{+1)(ht—1) T 2>t

The lemma below presents several desirable properties of ()7 .

Lemma 12. For any t,7 > 1, Q] is bounded, measurable, nonempty and compact

valued, and upper hemicontinuous.

Proof. For t > 7, Q] is bounded, measurable, nonempty and compact valued, and
upper hemicontinuous because of the corresponding properties of u and A;.

For t < 7, we can start with Q7,;. Repeating the backward induction in
Section 6.2.1, ()7 is bounded, measurable, nonempty and compact valued, and

upper hemicontinuous. O

Denote Qf° = N;>1Q7. Recall that Q7 is the payoff correspondence of
correlated strategies when 7 < ¢, and the correspondence obtained by repeating
the backward induction from Q7 ,; when 7 > t. Given some ¢, when 7 is sufficiently
large, it is expected that Q7 ; should be close to the payoff correspondence of all the
mixed strategies, as the game is continuous at infinity. Given the correspondence
Q7. 1, players play some equilibrium strategies in each backward induction step.
As a result, it is expected that Q)] would be close to the actual equilibrium payoff
correspondence F; for sufficiently large 7. The following three lemmas show that
Qe (ht—1) = ®(Q%1)(ht—1) = Ey(hy—1) for all by € H;_,.146

Lemma 13. 1. The correspondence Q° is bounded, measurable, nonempty and

compact valued, and upper hemicontinuous.
2. For anyt > 1, Qf°(ht—1) = ®(Q% 1) (he—1) for all hy—1 € Hy—1.

Proof. (1) It is obvious that Q$° is bounded. By the definition of @7, for all
hi—1 € Hi—1, Q' (hi—1) C Q7 (hy—1) for 71 > 79. Since Q] is nonempty and
compact valued, Q2° = N;>1 Q7 is nonempty and compact valued. By Lemma 2 (2),
Nr>1Q7 is measurable, which implies that Q§° is measurable.

Since @] is upper hemicontinuous for any 7, by Lemma 2 (7), it has a closed
graph for each 7, which implies that Qf° has a closed graph. Referring to

Lemma 2 (7) again, Q7° is upper hemicontinuous.

(2) For any 7 > 1 and hy—1 € Hy 1, ®(Q%)(h—1) € ®(QF1)(hi—1) C

Q7 (ht—1), and hence ®(Q771)(hi—1) € Q7% (hi-1)-
Let {1,2,...00} be a countable compact space endowed with the following

metric: d(k,m) = | — 1| for 1 < k,m < oco. The sequence {Q,;}1<r<oo

46The proofs of Lemmas 13 and 15 follow the standard argument with various modifications; see, for
example, Harris (1990), Harris, Reny and Robson (1995) and Mariotti (2000).
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can be regarded as a correspondence (Q¢4+1 from Hy x {1,2,...,00} to R™, which
is measurable, nonempty and compact valued, and upper hemicontinuous on
H; x {1,2,...,00}. The step of backward induction in Section 6.2.1 shows that
®((Q¢41) is measurable, nonempty and compact valued, and upper hemicontinuous
on Hy x {1,2,...,00}. For hy_y € H;—; and a € Q7°(hi—1), by its definition,
a€ Qf(hi—1) = ®(Q71)(ht—1) for 7 > t. Thus, a € ®(Q7%;)(ht—1).

As a result, Q°(hi—1) = ®(QgY,)(hs—1) for all hy_y € Hy . O

Though the definition of )] involves correlated strategies for 7 < t, the
following lemma shows that one can work with mixed strategies in terms of
equilibrium payoffs. In Lemma 13, it is shown that Qf° = ®(Qg%,) for any ¢ > 1.
Then one can apply the forward induction recursively to obtain the mixed strategies
{fri}ier and a selection c; of Qp° for each k > 1 such that fi; is an equilibrium
and ¢ is the corresponding equilibrium payoff given the payoff function cy1.
Lemma 14 shows that { fi; }x>1,icr is indeed an equilibrium and ¢, is the equilibrium
payoff of the game in stage k. The key here is that since Q7° C Q] = PTRHL( 7o)
for k < 7, one can obtain ¢, via the strategies { fi; }r<i'<ricr between stages k and
7, and the correlated strategies {{x }i~. after stage 7. Because of the assumption
of the continuity at infinity, the latter payoff converges to ¢ as 7 — oo. To check
the equilibrium property, one can rely on the same asymptotic argument to check
the payoff for any deviation. Then we show that ¢ is an equilibrium payoff without

using the correlated strategies.

Lemma 14. If ¢; is a measurable selection of ®(Q ), then ci(hs—1) is a subgame-

perfect equilibrium payoff vector for any hy_1 € Hy_1.

Proof. Without loss of generality, we only prove the case t = 1.

Suppose that c¢; is a measurable selection of ®(Q35°). Apply Proposition 3
recursively to obtain Borel measurable mappings { fx;}ics for & > 1. That is, for
any k > 1, there exists a Borel measurable selection cj of Q7° such that for all
hg—1 € Hi—1,

1. fx(hg—1) is a Nash equilibrium in the subgame hj_1, where the action space

is Ag;(hg—1) for player i € I, and the payoff function is given by

/s Crt1(Pi—1, -, sk) fro(dsk|hr—1)-
k

Ck(hk—l):/ / Chip1(Pi—1, T, sk) fro(dsk|hr—1) fr(deg|hr—1).
A (hig—1) J Sk
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We need to show that c¢;(hg) is a subgame-perfect equilibrium payoff vector for all
hy € Hy.

Step 1. We show that for any k£ > 1 and all hy_1 € Hy_1,
ck(hr-1) = / U(hk—l,%S)Q(hk,l,f)(d(xas))-
[T5k (XmXxSm)

Fix a positive integer M > k. By Lemma 13, cx(hp—1) € Qp°(hi—1) =
Nr>1Q%(hg—1) for all hy_y € Hp_;. Since Qf = CI’T*’““(Q;H) for £ < T,
ck(hi—1) € Nesp® FH(QT, ) (he—1) S @M Q] ) (hy—1) for all hy_y €
Hj._1. Thus, there exists a Borel measurable selection w of Q% 41 and some { €T
such that for all hp;_1 € Hyj_1,

i. far(har—1) is a Nash equilibrium in the subgame hj;_q1, where the action
space is Apsi(har—1) for player ¢ € I, and the payoff function is given by

/ w(har—1,+, sa) fvo(dsar|har—1);
Sm
ii.
CM(hM1)=/ / w(hy—1, 26, sar) favo(dsarlhar—1) far(dear [ har—1);
Ap(har—1) Y Swm

1il. U)(hM) = me>1u+1(Xm><Sm) u(hM7 xz, S)‘Q(h]y[,f) (d(l'7 8))
Then for hy_1 € Hp_1,

cr(hr-1) = / u(hg—1,2, 8)0(n,_, pvy(dz, 5)),
where f,ﬁ\/[ is fr if K < M, and & if Kk > M + 1. Since the game is continuous,

u(hg_1,,8)0 o T,
/1_[m>k(Xm><Sm) ( ! ) (hk—laf )(d( ))

converges to

/ wlhiot, 7,80y, (s 5))
[T (Xom X i)

when M goes to infinity. Thus, for all hy_1 € Hp_1,

cp(hi—1) = / u(hg—1,%,8)0(h,_,,p)(dx,s)). (2)
T (Xim X Sm)
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Step 2. Below, we show that { fx;}ics is a subgame-perfect equilibrium.
Fix a player ¢ and a strategy g; = {gri}r>1. For each k > 1, define a new

strategy ff as follows: ff = (91is- - > Gris f1)i> f(kt2)i» - - -). That is, we simply
replace the initial k stages of f; by g;. Denote f* = (fF, Fr(=i))-
Fix k > 1. For any hy, = (2¥, s¥), we have

/ w2, ) o, (. 5))
[Lskt1(XmXSm)

= / / C(k+2)i(Pks Thr15 Sk41) Fe1)0(dSk41|Pke) frer1 (d@pt1 [ k)
Agy1(hi) J Skt

> / / Cot2yi My Tra 15 k1) For )0 (A1 k) (Frs1) (=) © 9(et1)i) (g1 hi)
Agy1(hi) J Skt

=/ / / / C(k+3)i (P Tkt 15 Skt 15 Tht2, Sk42)
Apy1(hr) I Skq1 Y Arqo(hi,@rt1,55+1) 4 Skt2

foer20(dsktalhis Tty Sk+1) frroy(—i) © frroyi(dzpsa|he, Thv1, Sk41)

fornyo(dska1he) fre41)(=i) @ Ikt1)i(drr1]he)

2/ / / / C(kt3)i (Phey Tty Skt1, Tht2, Sk42)
Apy1(he) Y Skq1 J Appo(hi,®ri1,5641) J Sk

foer2)0(dskralhb, Ti1s Sk1) fkr2)(—i) @ Gk+2)i(ATrr2| by Tt 1, Sk41)

fter1)0(dser1lhe) fet1)(—i) © I(er1)i(dTry1|hr)

= / u(hk7x73)zg(hk7fk+2)(d(xaS))'
[Ln> kg1 (Xm X Sm)

The first and the last equalities follow from Equation (2) in the end of step 1.
The second equality is due to (ii) in step 1. The first inequality is based on (i) in
step 1. The second inequality holds since by the choice of hj and (i) in step 1, for
fk+1)0(hg)-almost all sp11 € Skyq and all zgy1 € Xgy1, we have

/ / Clkt-3)i (Pks Ty 15 Skt 15 Ty 2, Skr2)
Apy2(hi,Tr11,5K+1) ¥ Skt2

foer2)0(dsktalhi, Trt1s Sk+1) fkroy(—i) © firroyi(dTpsa|h, Thy1, k1)

> / / Clhot3)i (ks Thot 15 Skt 15 Ty 2s Sky2)
Apto2(hrTrt1,5k+1) Y Sky2

f(k+2)0(d3k+2

Pl Tht 1, Sk+1) fkr2) (—i) @ 9(hr2)i(ATh2 ik, Tp1, St1).-

Repeating the above argument, one can show that

/ u(hk,l',S)Q(hk’f)(d(l',S))
[Ln> k41 (XmxSm)
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>

w(hy, ,5)0, e (A, 5))
/1;177L2k+1(XmXSm) (hk:f )

for any M > k. Since

u(hi, ,8)0, z,s
/]-_IWLZk+1(Xm><Sm) ( ) (hk,fM+1)(d( ))

converges to

u(his T, 8)0(hy (g1, 1)) (AT, 8))
[Ln> k41 (Xm X Sm)

as M goes to infinity, we have

/ wlhie . 8)gny. ) (A, 9))
ILskt1(XmXSm)

>

(P, 2, 8)0(hy, (i, fo)) (AT, 8))-
/I_ImZk+1(Xm><Sm) N

Therefore, { fi;}icr is a subgame-perfect equilibrium. O

By Lemmas 10 and 13, the correspondence ®(Q7;) is measurable, nonempty
and compact valued. By Lemma 2 (3), it has a measurable selection. Then the
equilibrium existence result in Theorem 1 follows from the above lemma.

For t > 1 and hy—1 € Hy_q, recall that E;(h;—1) is the set of payoff vectors of
subgame-perfect equilibria in the subgame h;_1. The following lemma shows that
Ei(h¢—1) is the same as Q°(h¢—1).

Lemma 15. For anyt > 1, Ei(hi—1) = Q°(ht—1) for all hy—1 € Hy_1.

Proof. (1) We will first prove the following claim: for any ¢ and 7, if Fy11(h) C
Q7,1(h¢) for all hy € Hy, then Ey(hy—1) € Qf (hy—1) for all hy_y € Hy 1. We only
need to consider the case that t < 7.

By the construction of ®(Q7,;) in Section 6.2.1, for any ¢; and hy1 =
(zt=1, st € Hyq, if

Loce = [4,0n 1) Js, @r1(he—1,2t, 5¢) fro(dse|he—1)a(da), where ger1(he—1,-) is
measurable and qy1(h¢—1, %, 5¢) € QFq(he—1,2¢,5¢) for all s; € Sy and x; €
Ag(hi—1);

2. o € ®ierM(Asi(hi—1)) is a Nash equilibrium in the subgame h;_; with payoff
fSt qev1(ht—1,-,5¢) fro(dse|hs—1) and action space [[;c; Ati(hi—1),

then ¢; € ®(Q7,1)(ht—1).
Fix a subgame h;_1 = (2'~!,s'~1). Pick a point ¢; € Ey(h;_1). There exists

a strategy profile f such that f is a subgame-perfect equilibrium in the subgame
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hi—1 and the payoff is ¢;. Let ¢i41(hi—1, ¢, s¢) be the payoff vector induced by
{fti}ier in the subgame (hi—1, ¢, s¢) € Gr(A;) x S¢. Then we have

Loce= [a, 0 1) Js, ctr1(he, 20, 5¢) fro(dselhe—1) fi(dwe| he1);
2. fi(:|ht=1) is a Nash equilibrium in the subgame h;—; with action space

At(ht—1) and payoff [g cir1(he—1,, st) fro(dse|he—1).

Since f is a subgame-perfect equilibrium in the subgame h;_1, ¢;r1(hi—1, T¢, $¢) €
Eip1(he—1,2e,8)) € Q71 (hi—1,2¢,5¢) for all s; € Sy and 2 € Ay(hs—1), which
implies that ¢; € ®(Q7,1)(ht—1) = QF (hi—1).

Therefore, Ey(hi—1) C QF (ht—1) for all hy_1 € Hy_.

(2) For any t > 7, Ey C Q. If t < 7, we can start with £,y € Q7 and
repeat the argument in (1), then we can show that Ey(hi—1) C Q7 (hi—1) for all
hi—1 € Hy—1. Thus, Ey(hi—1) € Q5°(hy—1) for all hy_y € H;_;.

Suppose that ¢; is a measurable selection from ®(Q¢5,). Apply Proposition 3
recursively to obtain Borel measurable mappings { fi; }ics for k > ¢t. By Lemma 14,
ct(hi—1) is a subgame-perfect equilibrium payoff vector for all hy—y € H;_;.
Consequently, ®(Q5)(ht—1) € Ei(hi—1) for all hy_y € Hy_1.

By Lemma 13, E¢(h¢—1) = Q°(ht—1) = ®(Q%)(he—1) for all hy_y € Hyy. [

Therefore, we complete the proof of Theorem 1.

6.3 Proof of Theorem 2

Step 1. Backward induction.

For any ¢t > 1, suppose that the correspondence ;41 from H; to R" is bounded,
measurable, nonempty and compact valued, and upper hemicontinuous on X*.

If player j is the active player in stage ¢, then we assume that S; = {}.
Thus, Pi(hi—1,2¢) = Qy1(hi—1, 2+, $¢), which is nonempty and compact valued,
and upper hemicontinuous. Note that P, may not be convex valued. Then define
the correspondence ®; from H;_1 to R" x M(X;) x A(Xy) as (v, a,pu) € Py(hi—1)
if

1. v = pe(he—q, At(_j)(ht_l),:):fj) such that p;(h¢—1,-) is a measurable selection
of Pi(hi—1,-);

2. a3 € Ayj(hi—1) is a maximization point of player j given the payoff function
ptj(he—1, Ay—j)(hi—1),-) and the action space Ayj(hi-1), @i = 04,,(h,_,) for
i# jand a; = 5%;

3. p= 5pt(ht—1:At(7j)(hi—l)vx:j)'

If P, is nonempty, convex and compact valued, and upper hemicontinuous, then

we can use Lemma 10, the main result of Simon and Zame (1990), to prove the
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nonemptiness, compactness, and upper hemicontinuity of ®;. In Simon and Zame
(1990), the only step they need the convexity of P; for the proof of their main
theorem is Lemma 2 therein. However, the one-player pure-strategy version of
their Lemma 2, stated in the following paragraph, directly follows from the upper

hemicontinuity of P; without requiring the convexity.

Let Z be a compact metric space, and {2, }n>0 € Z. Let P: Z — R4 be
a bounded, upper hemicontinuous correspondence with nonempty and
compact values. For each n > 1, let ¢, be a Borel measurable selection
of P such that g,(z,) = d,. If 2, converges to 2y and d,, converges to
some dy, then dy € P(z).

Repeat the argument in the proof of the main theorem of Simon and Zame
(1990), one can show that ®; is nonempty and compact valued, and upper
hemicontinuous.

Next, we consider the case that Nature moves in stage t. That is, there is no
active player in I moving in this stage and A;(h;—1) is a singleton set. Suppose
that the correspondence @41 from H; to R™ is bounded, measurable, nonempty

and compact valued, and upper hemicontinuous. Let
Py(hi—1, 1) = / Qt+1(he—1, 71, 5¢) fro(dse| h—1),
St

where Ay(hi—1) = {x}. Since fi(:|hi—1) is atomless, as in Section 6.2.1, P; is
nonempty, convex and compact valued, and upper hemicontinuous. The rest of
the step remains the same as in Section 6.2.1.

In summary, ®; is nonempty and compact valued, and upper hemicontinuous.

Steps 2 and 3. Forward induction and the infinite horizon case.
These two steps are the same as that in Section 6.2, except the corresponding
notations need to be changed to be consistent with the perfect information

environment whenever necessary.

Remark 4. Theorem 2 remains to be true if the state transitions either are
atomless, or have the support inside a fized finite set irrespective of the history
at a particular stage. In the backward induction step, at the stage t that Nature is

active and concentrates inside a fized finite set {si1, ..., Sk}, we have

Pi(hi—1, ) = Z Qi+1(hi—1, 21, 501) fro({Ser }Hhe—1),

Stk E{St1,-.,StK }

where Ay(hi—1) = {x1}. Note that P, is also nonempty and compact valued, and

upper hemicontinuous. The proof is the same in other cases. Similarly, Theorem 4
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still holds if the state transitions either satisfy the ARM condition, or have the

support inside a fized finite set irrespective of the history at a particular stage.

6.4 Proof of Proposition 1

The proof is essentially the combination of the proofs in Sections 6.2 and 6.3. That
is, when there is only one active player, we refer to the argument in Section 6.3.
When there are more than one active players or Nature is the only player who

moves, we modify the argument in Section 6.2.

Step 1. Backward induction.

For any t > 1, suppose that the correspondence Q¢+1 from H; to R™ is bounded,
measurable, nonempty and compact valued, and upper hemicontinuous on X*.

If Ny = 1, then Sy = {s;}. Thus, Pi(hi—1,21) = Qr1(hi—1,2¢, ), which
is nonempty and compact valued, and upper hemicontinuous. Then define the
correspondence ®; from H; 1 to R™ x M(X;) x A(Xy) as (v, a, p) € ®(he—q) if

1. v = pt(ht,l,At(_j)(ht,l),mfj) such that p;(h¢—1,-) is a measurable selection
of P(ht—1,-);
2. zj; € Agj(he—1) is a maximization point of player j given the payoff function
ptj(ht_l,At(,j)(ht_l),-) and the action space Ayj(hi—1), a; = (5Ati(ht—1) for
i # jand a; = (5x;j;
3. p= 5Pt(ht*lv‘4t(—j)(htfl)vxfj)'
As discussed in Section 6.3, ®; is nonempty and compact valued, and upper

hemicontinuous.
When N; =0, for any hy—1 € Hy—1 and xy € Ay(hy—1),

Py(ht—1,2¢) 2/ Qt+1(hi—1, 21, 5¢) fro(dse| b1, 24).
Aso(he—1,2¢)
Let coQ¢+1(hi—1, 2, s¢) be the convex hull of Quyi1(hi—1,x¢, s¢). Because Q11 is
bounded, nonempty and compact valued, coQy+1 is bounded, nonempty, convex
and compact valued. By Lemma 2 (8), coQ¢+1 is upper hemicontinuous.
Note that fyo(-|hi—1,x¢) is atomless and Q41 is nonempty and compact valued.
We have

Py(ht—1,x¢) :/ coQi41(ht—1, ¢, st) fro(dse|he—1, z4).
Ato(he—1,t)

By Lemma 7, P; is bounded, nonempty, convex and compact valued, and upper
hemicontinuous. Then by Lemma 10, one can conclude that ®; is bounded,

nonempty and compact valued, and upper hemicontinuous.
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Steps 2 and 3. Forward induction and the infinite horizon case.
These two steps are the same as that in Section 6.2. The only change is to

modify the notations correspondingly.
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Dynamic Games with (Almost) Perfect Information:

Appendix B

Wei He* Yeneng Sun'

This version: September 16, 2019

In Section B.1, we shall present the model of measurable dynamic games with
partially perfect information and show the existence of subgame-perfect equilibria in
Proposition B.1. It covers the results in Theorem 3 (Theorem 4) for dynamic games with

almost perfect information (perfect information), and in discounted stochastic games.

In Section B.2, we present Lemmas B.1-B.6 as the mathematical preparations for
proving Theorem 3. We present in Section B.3 a new equilibrium existence result for
discontinuous games with stochastic endogenous sharing rules. The proof of Theorem 3
is given in Section B.4. The proof of Proposition B.1 is provided in Section B.5, which
covers Theorem 4 as a special case. One can skip Sections B.2 and B.3 first, and refer

to the technical results in these two sections whenever necessary.

B.1 Measurable dynamic games with partially perfect informa-

tion

In this section, we will generalize the model of measurable dynamic games in three
directions. The ARM condition is partially relaxed such that (1) perfect information
may be allowed in some stages, (2) the state transitions could have a weakly continuous
component in all other stages, and (3) the state transition in any period can depend on
the action profile in the current stage as well as on the previous history. The first change
allows us to combine the models of dynamic games with perfect and almost perfect

information. The second generalization implies that the state transitions need not be

*Department of Economics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail:
hewei@cuhk.edu.hk.

fRisk Management Institute and Department of Economics, National University of Singapore, 21
Heng Mui Keng Terrace, Singapore 119613. Email: ynsun@nus.edu.sg.



norm continuous on the Banach space of finite measures. The last modification covers

the model of stochastic games as a special case.

The changes are described below.

1. The state space is a product space of two Polish spaces; that is, S; = S; x S; for
each t > 1.

2. For each ¢ € I, the action correspondence Ay from H;_; to Xj; is measurable,
nonempty and compact valued, and sectionally continuous on X*~! x St=1. The
additional component of Nature is given by a measurable, nonempty and closed
valued correspondence Ay from Gr(A;) to S, which is sectionally continuous on
Xt x St1 Then H, = Gr(flto) x S;, and Hy, is the subset of X x S° such that
(x,s) € Hy if (2!, s") € H; for any ¢ > 0.

3. The choice of Nature depends not only on the history h;_;, but also on the action
profile x; in the current stage. The state transition fio(hi—1,2:) = fto(ht_l,xt) o
fm(ht_l, xt), where fto is a transition probability from Gr(A;) to M(gt) such that
ftg(fltg(ht,l,xt)\ht,l,xt) = 1 for all (hy_1,2¢) € Gr(A4;), and fio is a transition
probability from Gr(Ay) to M(S}).

4. For each ¢ € I, the payoff function w; is a Borel measurable mapping from H., to

R, 1, which is sectionally continuous on X* x S*°.

As in Subsection 3.3, we allow the possibility for the players to have perfect

information in some stages. For ¢t > 1, let

1, if fio(hy_1, ) = ds, for some s; and
Ny = [{i € I: Ay is not point valued}| = 1;

0, otherwise.

Thus, if N; = 1 for some stage t, then the player who is active in the period t is the only

active player and has perfect information.

We will drop the ARM condition in those periods with only one active player, and
weaken the ARM condition in other periods.

Assumption B.1 (ARM'). 1. For any t > 1 with N, = 1, S; is a singleton set {$;}
and Ay = dg,.

2. For eacht > 1 with Ny = 0, ,]Et(] is sectionally continuous on X' x St=1 where the

range space M(S}) 1s endowed with topology of weak convergence of measures on
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S,. The probability measure fro(-|hee1, s, 8¢) is absolutely continuous with respect
to an atomless Borel probability measure A, on S; for all (hi—1, 24, 8) € Gr(flto),

and ©i0(hi_1, T4, 8¢, 5¢) is the corresponding density.!

3. The mapping s is Borel measurable and sectionally continuous on X' x St and
integrably bounded in the sense that there is a \-integrable function ¢,: S, — R
such that pu(hi—1, ¢, 8¢, 8, ) < e(5¢) for any (hy—1, x4, 5¢).

The following result shows that the existence result is still true in this more general

setting.

Proposition B.1. If an infinite-horizon dynamic game as described above satisfies
the ARM condition and is continuous at infinity, then it possesses a subgame-perfect
equilibrium f. In particular, for j € I and t > 1 such that N, = 1 and player j is the
only active player in this period, fi; can be deterministic. Furthermore, the equilibrium
payoff correspondence E; is nonempty and compact valued, and essentially sectionally

upper hemicontinuous on Xt~ x St=1,

Remark B.1. The result above also implies a new existence result of subgame-perfect
equilibria for stochastic games. In the existence result of [6], the state transitions are
assumed to be norm continuous with respect to the actions in the previous stage. They
did not assume the ARM condition. On the contrary, our Proposition B.1 allows the

state transitions to have a weakly continuous component.

B.2 Technical preparations

The following lemma shows that the space of nonempty compact subsets of a Polish

space is still Polish under the Hausdorff metric topology.

Lemma B.1. Suppose that X is a Polish space and KC is the set of all nonempty compact
subsets of X endowed with the Hausdorff metric topology. Then K is a Polish space.

Proof. By Theorem 3.88 (2) of [1], K is complete. In addition, Corollary 3.90 and
Theorem 3.91 of [1] imply that I is separable. Thus, I is a Polish space. ]

The following result presents a variant of Lemma 5 in terms of transition correspon-
dences.

1II~1 this section, a property is said to hold for Af-almost all h; € H, if it is satisfied for Af-almost all
5t € St and all (z!,8") € Hy(s").



Lemma B.2. Let X and Y be Polish spaces, and Z a compact subset of ]RQL. Let G be
a measurable, nonempty and compact valued correspondence from X to M(Y'). Suppose
that F is a measurable, nonempty, convexr and compact valued correspondence from X XY

to Z. Define a correspondence Il from X to Z as follows:

[I(z) = {/ f(z,y)g(dy|x): g is a Borel measurable selection of G,
Y

f is a Borel measurable selection of F'}.
If F is sectionally continuous on'Y, then

1. the correspondence F: X x M(Y) = Z as F(z,v) = [, F( v(dy) is sectionally

continuous on M(Y'); and
2. Il is a measurable, nonempty and compact valued correspondence.

3. If F and G are both continuous, then Il is continuous.

Proof. (1) For any fixed # € X, the upper hemicontinuity of F(z,-) follows from

Lemma 7.

Next, we shall show the lower hemicontinuity. Fix any z € X. Suppose that {v;};>¢ is
a sequence in M(Y") such that v; — 1y as j — oo. Pick an arbitrary point 2z, € F(x ).
Then there exists a Borel measurable selection f of F'(x,-) such that zg = [, f(y)vo(dy).

By Lemma 3 (Lusin’s theorem), for each k > 1, there exists a compact subset D C Y
such that f is continuous on Dy and vy(Y \ Dy) < where M > 0 is the bound of

Z. Define a correspondence Fj: Y — Z as follows:

1
3kM >

{f)}, ye Dy

F(y) =
F(z,y), yeY\ Dy.

Then Fj is nonempty, convex and compact valued, and lower hemicontinuous. By
Theorem 3.22 in [1], Y is paracompact. Then by Lemma 3 (Michael’s selection theorem),

F}. has a continuous selection fy.

For each k, since v; — vy and f; is bounded and continuous, [, fi(y)v;(dy) —
[y fe(y)ro(dy) as j — co. Thus, there exists a subsequence {v;, } such that {ji} is an
increasing sequence, and for each k > 1,

/Y Se(y)vj (dy) — /Y Jr(y)ro(dy)

4
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where || - || is the Euclidean norm on R!.

Since f; coincides with f on Dy, vo(Y \ Dy) < and Z is bounded by M,

1
3kM >

y)vo(dy) — /f vo(dy) H 3%

/fk(y)vjk(dy)—/ f(y)VO(dy)H = %

Let z;, = [, fr(y)v;,(dy) for each k. Then z;, € F(x,v;,) and zj, — 2 as k — oo. By

Thus,

Lemma 1, F(z,-) is lower hemicontinuous.

(2) Since G is measurable and compact valued, there exists a sequence of Borel
measurable selections {gx}r>1 of G such that G(x) = {g1(x), g2(z),...} for any x € X

by Lemma 2 (5). For each k > 1, define a correspondence IT* from X to Z by letting
I*(z) = F(z, gy(x = [, F(z,y)gx(dy|z). Since F is convex valued, so is IT*. By
Lemma 5, IT* is also measurable, nonempty and compact valued.

Fix any = € X. It is clear that II(z) = F(z, G(z)) is nonempty valued. Since G(z) is
compact, and F(z,-) is compact valued and continuous, II(z) is compact by Lemma 2.
Thus, s, T#(z) C TI().

Fix any € X and z € II(z). There exists a point v € G(z) such that z € F(x,v).
Since {gx(z)}x>1 is dense in G(z), it has a subsequence {gy,, ()} such that gy, (z) — v.
As F(z,-) is continuous, F(z, g, (x)) = F(z,v). That is,

zEUF:cgk UH’f

k>1 k>1

Therefore, |J;», II¥(z) = II(z) for any € X. Lemma 2 (1) and (2) imply that II is

measurable.

(3) Define a correspondence F': M(X x Y) — Z as follows:

F(r) = { fz,y)r(dz,y)): fis a Borel measurable selection of F} :
XxXY

By (1), Fis continuous. Define a correspondence G: X — M(X xY) as G(z) = {6, Qv :
E(

v € G(z)}. Since G and F are both nonempty valued, II(z) = F(G(x)) is nonempty. As



G is compact valued and F'is continuous, IT is compact valued by Lemma 2. As G and

F are both continuous, IT is continuous by Lemma 1 (7). O

The following lemma shows that a measurable and sectionally continuous correspon-

dence on a product space is approximately continuous on the product space.

Lemma B.3. Let S, X and Y be Polish spaces endowed with the Borel o-algebras, and
A a Borel probability measure on S. Denote S as the completion of the Borel o-algebra
B(S) of S under the probability measure \. Suppose that D is a B(S)® B(Y')-measurable
subset of SXY', where D(s) is nonempty and compact for all s € S. Let A be a nonempty
and compact valued correspondence from D to X, which is sectionally continuous on'Y
and has a B(S xY x X)-measurable graph. Then

(i) A(s) = Gr(A(s,-)) is an S-measurable mapping from S to the set of nonempty and
compact subsets Kyyx of Y x X;

(1) there exist countably many disjoint compact subsets { Sy, }m>1 of S such that (1)
AUp>1Sm) = 1, and (2) for each m > 1, D,, = DN (S, X Y) is compact, and A

15 nonempty and compact valued, and continuous on each D,,.

Proof. (i) A(s, ) is continuous and D(s) is compact, Gr(A(s,-)) CY x X is compact by
Lemma 2. Thus, A is nonempty and compact valued. Since A has a measurable graph, A

is an S-measurable mapping from S to the set of nonempty and compact subsets Ky« x
of Y x X by Lemma 1 (4).

(ii) Define a correspondence D from S to Y such that D(s) = {y € Y: (s,y) € D}.
Then D is nonempty and compact valued. As in (i), D is S-measurable. By Lemma 3
(Lusin’s Theorem), there exists a compact subset S; € S such that A(S\ S;) < 3,
D and A are continuous functions on S;. By Lemma 1 (3), D and A are continuous
correspondences on S;. Let Dy = {(s,y) € D: s € Sy,y € D(s)}. Since S; is compact

and D is continuous, D; is compact (see Lemma 2 (6)).

Following the same procedure, for any m > 1, there exists a compact subset S, C
S such that (1) S, N (Ui<g<m-15k) = 0 and D,,, = D N (S,, x Y) is compact, (2)
A(Sm) > 0 and A (S'\ (Ui<p<mSm)) < 5=, and (3) A is nonempty and compact valued,

and continuous on D,,. This completes the proof. O

The lemma below states an equivalence property for the weak convergence of Borel

probability measures obtained from the product of transition probabilities.



Lemma B.4. Let S and X be Polish spaces, and A a Borel probability measure on S.
Suppose that { Sk }r>1 is a sequence of disjoint compact subsets of S such that \N(Ug>1Sk) =
1. For each k, define a probability measure on Sy as \i(D) = % for any measurable
subset D C Sy. Let {vm }m>0 be a sequence of transition probabilities from S to M(X),
and T, = Ao Uy, for any m > 0. Then T, weakly converges to 1o if and only if A\x © v,

weakly converges to A\ o vy for each k > 1.

Proof. First, we assume that 7, weakly converges to 7. For any closed subset £ C
Sk X X, we have limsupm_m Tm(E) < 10(E). That is limsup,,, ;oo A ¢ Un(E) < Ao
v(E). For any k, S A )/\ o 1p(F), which implies that
lim sup,,, .. Ak © Vi (E ) < Ao vp(FE). Thus, A\ o v, weakly converges to i, ¢ 1 for each
E>1.

limsup,, ..o A © Vp(E) <

Second, we consider the case that \; ¢ v, weakly converges to A\ ¢ 1y for each k > 1.
For any closed subset £ C S x X, let B, = EN (S, x X) for each k£ > 1. Then
{Ex} are disjoint closed subsets and limsup,, ,. A\t © Vm(Ex) < Ap © v(Eg). Since
A ovm(E') = /\(S /\oum(E’) for any k, m and measurable subset E' C Sy x X, we have
that lim sup,, .. Ao v (Er) < Ao vy(Ey). Thus,

Zlimsup/\oum(Ek) < Z Aovy(Ex) = Ao(F).
k>1 MO k>1

Since the limit superior is subadditive, we have

Z lim sup A ¢ v, (Ey) > lim sup Z Ao vy (Ey) = limsup A o v, (E).

Therefore, limsup,, , . A ¢ U (E) < Ao 1o(E), which implies that 7, weakly converges
to T0- O

The following is a key lemma that allows one to drop the continuity condition on the

state variables through a reference measure in Theorem 3.

Lemma B.5. Suppose that X,Y and S are Polish spaces and Z is a compact metric
space. Let \ be a Borel probability measure on S, and A a nonempty and compact
valued correspondence from Z x S to X which is sectionally upper hemicontinuous on Z
and has a B(Z x S x X)-measurable graph. Let G be a nonempty and compact valued,
continuous correspondence from Z to M(X x S). We assume that for any z € Z and
7 € G(2), the marginal of T on S is A and 7(Gr(A(z,-))) = 1. Let F' be a measurable,

nonempty, convex and compact valued correspondence from Gr(A) — M(Y') such that F'



is sectionally continuous on Z x X. Define a correspondence Il from Z to M(X x S xY')

by letting

II(z) = {g(2) ¢ f(z,-): g is a Borel measurable selection of G,

f is a Borel measurable selection of F'}.

Then the correspondence 11 is nonempty and compact valued, and continuous.

Proof. Let S be the completion of B(.S) under the probability measure A. By Lemma B.3,
A(s) = Gr(A(s,-)) can be viewed as an S-measurable mapping from S to the set of
nonempty and compact subsets Kzxx of Z x X. For any s € S, the correspondence
F, = F(-,s) is continuous on A(s). By Lemma 3, there exists a measurable, nonempty
and compact valued correspondence F from Z x X x S to M(Y') and a Borel measurable
subset S’ of S with A\(S") = 1 such that for each s € S, F, is continuous on Z x X, and

the restriction of F, to A(s) is Fj.

By Lemma 3 (Lusin’s theorem), there exists a compact subset S; C S’ such that A
is continuous on S; and A(Sy) > % Let K| = fl(Sl). Then K; C Z x X is compact.

Let C(Ky, Kpyy) be the space of continuous functions from K to Kuyy, where
ICam(yy is the set of nonempty and compact subsets of M(Y’). Suppose that the restriction
of S on S is §;. Let Fl be the restriction of F to K, x S;. Then }3’1 can be viewed as
an Sj-measurable function from S to C'(Ky, Kaqy)) (see Theorem 4.55 in [1]). Again
by Lemma 3 (Lusin’s theorem), there exists a compact subset of Sy, say itself, such that
A(S1) > % and Fl is continuous on S;. As a result, ﬁ’l is a continuous correspondence
on Gr(A) N (S; x Z x X), so is F. Let A\; be a probability measure on S; such that

(D

(D) = r&)) for any measurable subset D C 5.

For any z € Z and 7 € G(z), the definition of G implies that there exists a transition
probability v from S to X such that A\ ¢ v = 7. Define a correspondence G; from Z
to M(X x §) as follows: for any z € Z, G1(2) is the set of all 3 = Ay ¢ v such that
T =Aov € G(2). It can be easily checked that G; is also a nonempty and compact

valued, and continuous correspondence. Let

Ii(z) ={nof(z,:): m=XNoveGiz),

f is a Borel measurable selection of F}.

By Lemma 9, IT; is nonempty and compact valued, and continuous. Furthermore, it is



easy to see that for any z, II;(z) coincides with the set

{(Mov)o f(z,:): Aov € G(2), f is a Borel measurable selection of F'}.

Repeat this procedure, one can find a sequence of compact subsets {S;} such that
(1) for any t Z 17 St Q S/, Stﬂ (Sl U "‘St—1> = @ and )\(Sl U USt) 2 H»Ll’ (2)
F is continuous on Gr(A) N (S; x Z x X), A\ is a probability measure on S; such that
(D) = % for any measurable subset D C S;, and (3) the correspondence

i(z) ={(Mov)o f(z,-): Aov € G(z2),

f is a Borel measurable selection of F'}.

is nonempty and compact valued, and continuous.

Pick a sequence {z}, {vx} and { fi} such that (Aovg)< fi(zk, ) € II(2x), zx — 20 and
(Aovg) o fe(zk, -) weakly converges to some k. It is easy to see that (A\; o vy) < fi(zk, ") €
I1;(zx) for each t. As II; is compact valued and continuous, it has a subsequence, say
itself, such that z; converges to some 2o € Z and (A ¢ vy) © fr(2k, ) weakly converges
to some (A\; o pt) o f1(20,+) € II1(20). Repeat this procedure, one can get a sequence
of {u™} and f™. Let u(s) = pu™(s) and f(zo,s,2) = f™(z0,s,x) for any © € A(z, s)
when s € S,,,. By Lemma B.4, (Ao pu) ¢ f(20,-) = k, which implies that II is upper

hemicontinuous.

Similarly, the compactness and lower hemicontinuity of II follow from the compactness
and lower hemicontinuity of II; for each t. ]

The next lemma presents the convergence property for the integrals of a sequence of

functions and probability measures.

Lemma B.6. Let S and X be Polish spaces, and A a measurable, nonempty and compact
valued correspondence from S to X. Suppose that \ is a Borel probability measure on
S and {vn}1<n<co 5 a sequence of transition probabilities from S to M(X) such that
vn(A(s)|s) = 1 for each s and n. For each n > 1, let 7, = Ao v,. Assume that
the sequence {1,} of Borel probability measures on S x X converges weakly to a Borel
probability measure To, on S X X. Let {gn}1<n<co be a sequence of functions satisfying

the following three properties.

1. For each n between 1 and oo, g,: S X X — R, is measurable and sectionally

continuous on X.



2. For any s € S and any sequence T, — Too in X, §n(S,Tn) = Goo(S, Too) aS N — 00.

3. The sequence {gn}1<n<oco S integrably bounded in the sense that there exists a A-

integrable function ¢ : S — Ry such that for any n, s and x, g,(s,z) < (s).

Then we have

/ gn(s, )T (d(s,2)) — Goo(8, )T (d(s, ).
SxX SxX
Proof. By Theorem 2.1.3 in [2], for any integrably bounded function g: S x X — R,

which is sectionally continuous on X, we have

/S I a)m(ds,z) = 9(8, ) Too (d(s, ). (1)

SxX

Let {yn}1<n<oo be a sequence such that y, = % and 9, = 0. Then y,, — yoo. Define

a mapping g from S X X X {y1,...,Yx0} such that g(s,z,y,) = gn(s,z). Then g is
measurable on S and continuous on X X {yi,...,ys}. Define a correspondence G from
Sto X X {y1,..., Y} X Ry such that

G(s) = {(z,yn,0): c € g(s,2,yn),x € A(s),1 <n < oo}.

For any s, A(s) X {y1,...,Ys} is compact and §(s, -, ) is continuous. By Lemma 2 (6),
G(s) is compact. By Lemma 1 (2), G can be viewed as a measurable mapping from S
to the space of nonempty compact subsets of X X {y1,...,¥s} X Ry. Similarly, A can
be viewed as a measurable mapping from S to the space of nonempty compact subsets

of X.

Fix an arbitrary € > 0. By Lemma 3 (Lusin’s theorem), there exists a compact subset
S1 € S such that A and G are continuous on S; and A(S \ S1) < e. Without loss of
generality, we can assume that A(S'\ S;) is sufficiently small such that [ S\t P(s)A(ds) <

& Thus, for any n,

€
[ s = [ wemoads) < &
(5\S1)xX (5\51)
By Lemma 2 (6), the set £ = {(s,z): s € Si,z € A(s)} is compact. Since G
is continuous on Si, § is continuous on E X {y1,...,¥Ys}. Since E X {y1,...,Ys0} IS
compact, ¢ is uniformly continuous on E X {y1,...,%x}. Thus, there exists a positive

integer Ny > 0 such that for any n > Ni, [gn(s, ) — goo(s, z)| < § for any (s,7) € E.
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By Equation (1), there exists a positive integer Ny such that for any n > Ny,

Wl m

[ otsamiats.n) - [ Xxgm<s,x>foo<d<s,x>>\ <

Let No = max{Ny, No}. For any n > Ny,

/Sxxg(sxfn d(s,z)) /SXXgooszoo(d(s x))‘
/Sxxg(smnd(sx /SXXQOOS$Tnd($x))
[ ontsomsa) - [l
<[ atam@sa - [ oo
‘/ s B DA D) = / goo<sw>m(d<s,x>)‘

(S\S1)xX

<

+

+

[ amtsomidsan - [ Xxgm<s,x>7m<d<s,x>>\
< [lons.o) = ool mldso) +2- [ wlopmls.a)

(S\S1)xX

+

/sXx oo (8, @) Ta(d(s, 7)) —

€
<=-+2-
3+

— €.

07l )|

SxX
+

(o> N Ne)
Wl ™

This completes the proof. O

B.3 Discontinuous games with endogenous stochastic sharing

rules

It was proved in [7] that a Nash equilibrium exists in discontinuous games with
endogenous sharing rules. In particular, they considered a static game with a payoff
correspondence P that is bounded, nonempty, convex and compact valued, and upper
hemicontinuous. They showed that there exists a Borel measurable selection p of the
payoff correspondence, namely the endogenous sharing rule, and a mixed strategy profile
a such that « is a Nash equilibrium when players take p as the payoff function (see
Lemma 10).
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In this section, we shall consider discontinuous games with endogenous stochastic
sharing rules. That is, we allow the payoff correspondence to depend on some state

variable in a measurable way as follows:

1. let S be a Borel subset of a Polish space, Y a Polish space, and A\ a Borel probability

measure on S,

2. D is a B(S) ® B(Y)-measurable subset of S x Y, where D(s) is compact for all
se€Sand A({s € S: D(s) #0}) > 0;

3. X = ngz‘gn X;, where each X, is a Polish space;

4. for each i, A; is a measurable, nonempty and compact valued correspondence from
D to X;, which is sectionally continuous on Y

5. A=Tlcic, Ai and E = Gr(A);

6. P is a bounded, measurable, nonempty, convex and compact valued correspondence
from E to R™ which is essentially sectionally upper hemicontinuous on Y x X.

A stochastic sharing rule at (s,y) € D is a Borel measurable selection of the
correspondence P(s,y,-); i.e., a Borel measurable function p: A(s,y) — R" such that
p(z) € P(s,y,x) for all x € A(s,y). Given (s,y) € D, P(s,y,-) represents the set of all

possible payoff profiles, and a sharing rule p is a particular choice of the payoft profile.
Now we shall prove the following proposition.

Proposition B.2. There ezists a B(D)-measurable, nonempty and compact valued

correspondence ® from D to R™ x M(X) x A(X) such that ® is essentially sectionally

upper hemicontinuous on'Y', and for A-almost all s € S with D(s) # 0 and y € D(s),
O(s,y) is the set of points (v, «, ) that

1.v = [,p(s,y,x)a(dx) such that p(s,y,-) is a Borel measurable selection of
P(Say>');2

2. a € RietM(Ai(s,y)) is a Nash equilibrium in the subgame (s,y) with payoff profile
p(s,y,-), and action space A;(s,y) for each player i;

9. 1=p(s,y,) o

2Note that we require p(s,y, ) to be measurable for each (s,y), but p may not be jointly measurable.
3The finite measure p = p(s,y,) o o if u(B) = [, p(s,y,z)a(dz) for any Borel subset B C X.
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In addition, denote the restriction of ® on the first component R™ as ®|gn, which is a
correspondence from D to R™. Then ®|gn is bounded, measurable, nonempty and compact

valued, and essentially sectionally upper hemicontinuous on Y .

Proof. There exists a Borel subset S C S with A(S) = 1 such that D(s) # () for each
ses , and P is sectionally upper hemicontinuous on Y when it is restricted on Dﬂ(S‘ xY).

Without loss of generality, we assume that S=28.

Suppose that S is the completion of B(S) under the probability measure A. Let D
and & be the restrictions of S ® B(Y') and S ® B(Y) ® B(X) on D and FE, respectively.

Define a correspondence D from S to Y such that D(s) = {y € Y: (s,y) € D}. Then

D is nonempty and compact valued. By Lemma 1 (4), D is S-measurable.

Since D(s) is compact and A(s,-) is upper hemicontinuous for any s € S, F(s)
is compact by Lemma 2 (6). Define a correspondence I' from S to ¥ x X x R" as
I'(s) = Gr(P(s,-,-)). For all s, P(s,-,-) is bounded, upper hemicontinuous and compact
valued on E(s), hence it has a compact graph. As a result, I' is compact valued. By
Lemma 1 (1), P has an § ® B(Y x X x R™)-measurable graph. Since Gr(I') = Gr(P),
Gr(l') is S ® B(Y x X x R")-measurable. Due to Lemma 1 (4), the correspondence I’
is S-measurable. We can view I' as a function from S into the space K of nonempty
compact subsets of Y x X x R”. By Lemma B.1, K is a Polish space endowed with the
Hausdorff metric topology. Then by Lemma 1 (2), T" is an S-measurable function from S
to K. One can also define a correspondence A; from S to Y x X as A;(s) = Gr(A;(s,-)).
It is easy to show that A; can be viewed as an S-measurable function from S to the space
of nonempty compact subsets of Y x X, which is endowed with the Hausdorff metric
topology. By a similar argument, D can be viewed as an S-measurable function from S

to the space of nonempty compact subsets of Y.

By Lemma 3 (Lusin’s Theorem), there exists a compact subset S; C S such that
AMS\S) <1, T, D and {A;},<i<, are continuous functions on S;. By Lemma 1 (3),
[, D and A; are continuous correspondences on S;. Let D = {(s,y) € D: s € S,y €
D(s)}. Since S is compact and D is continuous, D; is compact (see Lemma 2 (6)).
Similarly, F; = EN(S; x Y x X) is also compact. Thus, P is an upper hemicontinuous
correspondence on E;. Define a correspondence ®; from D; to R" x M(X) x A(X) as
in Lemma 10, then it is nonempty and compact valued, and upper hemicontinuous on
D;.

Following the same procedure, for any m > 1, there exists a compact subset S,, C .S
such that (1) S, N (Ur<k<m—1Sk) = 0 and D,,, = DN (S, xY) is compact, (2) A(S,,) > 0
and A (S\ (Ui<k<mSm)) < 5=, and (3) there is a nonempty and compact valued, upper

2m’
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hemicontinuous correspondence ®,, from D,, to R" x M(X) x A(X), which satisfies
conditions (1)-(3) in Lemma 10. Thus, we have countably many disjoint sets {Sy, }m>1
such that (1) AM(U;>15m) = 1, (2) Py, is nonempty and compact valued, and upper

hemicontinuous on each D,,, m > 1.

Since A; is a B(S)®B(Y)-measurable, nonempty and compact valued correspondence,
it has a Borel measurable selection a; by Lemma 2 (3). Fix a Borel measurable selection p
of P (such a selection exists also due to Lemma 2 (3)). Define a mapping (vg, o, f0) from
D to R" x M(X) x A(X) such that (1) a;(s,y) = da,(s,y) and (s, y) = Ricros(s,y);
(2) vo(s,y) = p(s,y,a1(s,y)....,an(s,y)) and (3) po(s,y) = p(s,y, ) o ap. Let Dy =
D\ (Un>1D,,) and ®g(s,y) = {(vo(s Y), ao(s,9), to(s,y))} for (s,y) € Dy. Then, Py is
B(S) ® B(Y')-measurable, nonempty and compact valued.

Let ®(s,y) = ®,(s,y) if (s,y) € D, for some m > 0. Then, ®(s,y) satisfies
conditions (1)-(3) if (s,y) € D, for m > 1. That is, ® is B(D)-measurable, nonempty
and compact valued, and essentially sectionally upper hemicontinuous on Y, and satisfies
conditions (1)-(3) for A\-almost all s € S.

Then consider ®|g», which is the restriction of ® on the first component R™. Let
®,,|rn be the restriction of ®,, on the first component R"” with the domain D,,, for each
m > 0. It is obvious that ®g|gn is measurable, nonempty and compact valued. For
each m > 1, D,, is compact and ®,, is upper hemicontinuous and compact valued. By
Lemma 2 (6), Gr(®,,) is compact. Thus, Gr(®,,|g) is also compact. By Lemma 2 (4),

®,,|ge is measurable. In addition, ®,,|g~ is nonempty and compact valued, and upper

hemicontinuous on D,,. Notice that ®|gn(s,y) = P |re (S, y) if (s,y) € D, for some m >

0. Thus, ®|g~ is measurable, nonempty and compact valued, and essentially sectionally

upper hemicontinuous on Y.

The proof is complete. O

B.4 Proof of Theorem 3
B.4.1 Backward induction

For any ¢ > 1, suppose that the correspondence ()¢ from H; to R" is bounded, measur-
able, nonempty and compact valued, and essentially sectionally upper hemicontinuous
on X'. For any h;_; € Hy 1 and x; € Ay(hy_1), let

Pt(htfly 377&) = Qt+1(ht717 Tt, St)ft0<d5t|ht71>
St
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= S Qt+1(ht—1,$t7St)SOto(ht—lySt)/\t(dSt)-

It is obvious that the correspondence P, is measurable and nonempty valued. Since ;1
is bounded, P; is bounded. For A'-almost all s' € S*, Q;41(-, ') is bounded and upper
hemicontinuous on Hy(s'), and ¢y(s’, -) is continuous on Gr(A)(s'). As ¢y is integrably
bounded, P;(s'™!,-) is also upper hemicontinuous on Gr(A?)(s'™!) for A~!-almost all
st=1 € S'1 (see Lemma 4); that is, the correspondence P is essentially sectionally upper
hemicontinuous on X*. Again by Lemma 4, P, is convex and compact valued since ); is
an atomless probability measure. That is, P;: Gr(A") — R™ is a bounded, measurable,
nonempty, convex and compact valued correspondence which is essentially sectionally
upper hemicontinuous on X°.

By Proposition B.2, there exists a bounded, measurable, nonempty and compact
valued correspondence ®; from H;_; to R" x M(X;) x A(X;) such that @, is essentially
sectionally upper hemicontinuous on X®!, and for A~ !-almost all h,_y € H,_i,
(v, a, 1) € Py(hy—y) if

1. v= fAt(ht—l) p(hi—1, x)a(dx) such that p;(hi_1,-) is a Borel measurable selection of
Pt(htfla ')§

2. a € ®ierM(Ay(hi—1)) is a Nash equilibrium in the subgame h;_; with payoff

pe(hi—1,-) and action space [ [,.; Awi(hi—1);

i€l
3. = pi(hi-1,-) o a.

Denote the restriction of ®; on the first component R"™ as ®(Q;;1), which is a
correspondence from H;_; to R™. By Proposition B.2, ®(Q;1) is bounded, measurable,

nonempty and compact valued, and essentially sectionally upper hemicontinuous on
Xt
B.4.2 Forward induction

The following proposition presents the result on the step of forward induction.

Proposition B.3. For any t > 1 and any Borel measurable selection q; of ®(Qy1),
there exists a Borel measurable selection q;11 of Qry1 and a Borel measurable mapping
fr: Hi_1 — QierM(Xy) such that for X'=t-almost all hy_y € Hy_1,

1. fi(hi—1) € @ierM(Agi(he—1));
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2. q(hy—1) = fAt(htfl)fSt Grr1(he—1, @, 8¢) fro(dse | he—1) fi(dae|he—1);

3. fi(-|he—1) is a Nash equilibrium in the subgame hy_1 with action spaces Ay (hy—1),1 €
I and the payoff functions

/ Qt+1(ht71: ) St)fto(d5t|htfl)-
St

Proof. We divide the proof into three steps. In step 1, we show that there exist
Borel measurable mappings fi: Hi 1 — ®;e;M(Xy) and py: Hi—y — A(X;) such that
(Gi, fi, 1) is a selection of ®,. In step 2, we obtain a Borel measurable selection g; of P,
such that for A\*~!-almost all h,_; € H,_;,

L gi(ht) = fAt(htil)gt(ht—lyx)ft(dxmt—l);

2. fi(h4_1) is a Nash equilibrium in the subgame h;_; with payoff g;(h;_1,-) and action
space Ay(hi_1);

In step 3, we show that there exists a Borel measurable selection ¢;y1 of ;41 such that
for all ht—l c Ht—l and Ty € At(ht_1)7

gt(ht—hl‘t) :/ Qt+1(ht—1,$t7St)fto(d8t|ht—1)-
St

Combining Steps 1-3, the proof is complete.

Step 1. Let \Ift: Gr(@t(Qt+1)) — M(Xt) X A(Xt) be

qjt(ht—lvv) = {(O‘mu): (UaO‘?#) € (Dt(ht—l)}'

Recall the construction of ®; and the proof of Proposition B.2, H;_; can be divided into
countably many Borel subsets {H]"; },n>0 such that
_ m Atil(Um21prOjSt—1(Hﬁl))
1. H, = UmZOHtfl and At*l(pl"Ojstﬂ(th))

projgi—1(H;_1) are projections of H;"; and H;_; on S'!;

= 1, where projg-1(H";) and

2. for m > 1, H", is compact, ®; is upper hemicontinuous on H;",, and P, is upper

hemicontinuous on

{(hi—1,24): her € H"y 2 € Ay(hy—1) )
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3. there exists a Borel measurable mapping (vg, ag, to) from HY | to R™ x M(X;) X
A (X}) such that ®(hy_1) = {(vo(hi—1), ao(hi—1), po(hs—1))} for any hyy € HY ;.

Denote the restriction of ®; on H;™, as ®}*. For m > 1, Gr(®}") is compact, and hence
the correspondence W} (h;—q1,v) = {(a,p): (v, 0, u) € ®7*(hy—1)} has a compact graph.
For m > 1, W}" is measurable by Lemma 2 (4), and has a Borel measurable selection ;"
due to Lemma 2 (3). Define 9 (hi_1,vo(hi—1)) = (co(hs—1), po(he—1)) for hy_y € HY ;.
For (hi_1,v) € Gr(®(Qs11)), let ¥y(hy_1,v) = " (hi_q,v) if hy_1 € H™;. Then 1, is a

Borel measurable selection of W,.

Given a Borel measurable selection ¢; of ®(Q;11), let

Gr(hi—1) = (q(he—1), Ve(Pe1, g (hi-1))).

Then ¢; is a Borel measurable selection of ®,. Denote ]:[t_l = Up>1H",. By the
construction of ®;, there exists Borel measurable mappings f;: Hy_1 — ®;c;M(Xy;) and
e H_y — A(X,) such that for all h,_; € H, 4,

L oqg(hiy) = fAt(ht,l)pt(ht—l’ x) fi(dz|hs_1) such that p;(h;_1,-) is a Borel measurable
selection of P;(h_1,-);

2. fi(hi—1) € ®ierM(Ayi(hi—1)) is a Nash equilibrium in the subgame h;_; with payoff

pe(hi—1,-) and action space [ [,.; Awi(hi—1);

icl

3. e (+|hi1) = pe(he—1,-) o fi(-[he—1).

Step 2. Since P, is upper hemicontinuous on {(h;_1,z;): hy_1 € H", 2, € Ay(hy_1)},
due to Lemma 6, there exists a Borel measurable mapping ¢ such that (1) ¢ (hy_1, ;) €
Py(hi—y,x;) for any hy_y € H™, and z; € Ai(hi—1), and (2) ¢™(hi—1,x1) = pi(hi—1, T4)
for fi(:|h¢—1)-almost all z,. Fix an arbitrary Borel measurable selection ¢’ of P,. Define

a Borel measurable mapping from Gr(A4;) to R" as

g™ (hi—1,2,) if hy_y € H" ) for m > 1;
g(htflyxt) = .
g'(h¢_1,7;) otherwise.

Then ¢ is a Borel measurable selection of P,.

In a subgame h;_| € Ijlt_l, let

Bii(hi—1) = {yi € Avi(he—1):
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/ gi(ht—h yia:Et(—i))ft(—i)(dxt(—i)|ht—1) > / pti(ht—la -Tt)ft(dl"tmt—l)}-
A~y (he—1) At (hi—1)

Since g(hi—1, ;) = pe(he—1, x¢) for fi(-|hi—1)-almost all xy,

/ g(ht—lyxt)ft<dxt|ht—1> = / pt(htfhil?t)ft(dxt’htfl)
A¢(hi—1)

A¢(hi—1)

Thus, B;; is a measurable correspondence from H, ; to Ayi(hi—1). Let Bg(hi—y) =
Ayi(hi—1) \ Bii(hi—q) for each hy_y € H; 1. Then By, is a measurable and closed valued
correspondence, which has a Borel measurable graph by Lemma 1. As a result, By
also has a Borel measurable graph. As f;(h;_1) is a Nash equilibrium in the subgame
he1 € Hy_y with payoff py(hi—1,-), fii(Bei(hi-1)|hi—1) = 0.

Denote B;(hi—1,7;) = min Py(hy_1,x¢), where Py(hs_q1,7¢) is the projection of
P,(h¢—1,x;) on the i-th dimension. Then the correspondence Pj; is measurable and
compact valued, and f3; is Borel measurable. Let A;(hs_1,7¢) = {B;(hi_1,2¢)} x [0,7]" 71,
where v > 0 is the upper bound of P,. Denote Ai(h, 1, x;) = Aj(hi—1,2¢) N Pi(hy_1,x).
Then Al is a measurable and compact valued correspondence, and hence has a Borel

measurable selection ;. Note that ] is a Borel measurable selection of P;. Let
Ge(hi—1, 1) =

Bi(hi—1,2) if hy—y € ﬁt—ljxti € Byi(h—1) and zy; ¢ Byj(hy—1),Vj # i;

g(hi—1,z;) otherwise.
Notice that
{(hi—1,24) € Gr(Ay): hyy € f{t—laxti € Byi(hi—1) and x4 & Byj(he—1),Vj # 4 }
= Gr(Ay) NUier ((Gr(Bti) x [ Xu) \ (Uji(Gr(Byy) % Hth))) ,
J#i k#j
which is a Borel set. As a result, g; is a Borel measurable selection of P,. Moreover,
gt(hi—1, ) = py(hy—1, ;) for all hy_q € H, ; and fi(-|hi—1)-almost all z;.

Fix a subgame h;_; € H,_,. We will show that fi(:]h¢—1) is a Nash equilibrium given
the payoff g;(h;_1,-) in the subgame h;,_;. Suppose that player i deviates to some action

Tt -
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If Z4; € Byi(hy—1), then player i’s expected payoff is

/ gti(ht—la T, $t(7i))ft(fi) (dl't(fi) |ht—1)
Ag(—iy(he—1)

||
T

Gei(Pe—1, Tai, To(—4)) fe(—iy (A (i) Pe—1)
g1 Bij (he—1)

5i(ht717 Ty, -Tt(fi))ft(fi) (dﬂ?t(ﬂ') ’htfl)

g Bij(he=1)

IN

pti(htfly Ty, SUt(—i))ft(—z‘) (dl‘t(—z‘) |ht71)
i Bj(he—1)

—

Pri(he—1, Toi, To(—iy) fi—) (A2e (=) [ he—1)
t(—i) (he—1)

pti(ht—lv xt)ft<dxt|ht—1)
t(hi—1)

/ gti<ht71>xt)ft(dxt’htfl)-
At(hi—1)

IN

The first and the third equalities hold since fi;(By;(hi—1)|hi—1) = 0 for each j, and
hence ft(,i)(]_[#i Bii(hi)lhi—1) = fi—iy(Ae—i(hi-1)|ht—1). The second equality and
the first inequality are due to the fact that gu(hi—1, Zu, Te—s) = Bi(hi—1, Ti, Ty(—i)) =
min Py (hi—1, Tii, y—i)) < prilhu—1, Toi, Ty—sy) for zy_yy € H#i ij(ht,l). The second
inequality holds since f;(-|h;—1) is a Nash equilibrium given the payoff p,(h;_1,-) in the
subgame h;_;. The fourth equality follows from the fact that g,(h;—1,x;) = pe(he—1, x¢)
for fi(-|hi—1)-almost all x;.

If Z4; ¢ Byi(hy—1), then player i’s expected payoff is

/ gti(ht—la T, xt(fi))ft(fi) (da:t(fi) Vlt—l)
Ag—iy(he-1)

||
T~ g

gti(ht—la Ty, xt(fi))ft(fi) (d%:(ﬂ‘) |ht—1)
g Bt (he—1)

gi(htfla Ty, 33t(—z‘))ft(—z‘) (dxt(—i) ‘htfl)
i Bij(h—1)

A
—

gi(ht—la Ty, l‘t(—z‘))ft(—i) (dxt(—i) |ht—1)
t(—i)(ht—1)

Pn’(htfh 37t)ft<d5€t ’htfl)
t(hi—1)

gti(ht—b xt)ft(dxtmt—l)-
t(ht—1)
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The first and the third equalities hold since

Ji(=i) (H ij(ht—1)|ht—1> = fo—i)(Ay—i) (he—1) | he—1).

J#i

The second equality is due to the fact that gu(hi—1,Tu, Te—i)) = Gi(hi—1, Tei, Te—sy) for
Ty € [1 i Bf;(hy—1). The first inequality follows from the definition of By, and the
fourth equality holds since g;(h;—1, z¢) = pi(hy—1, z¢) for fi(-|h,_1)-almost all ;.

Thus, player ¢ cannot improve his payoff in the subgame h; by a unilateral change in
his strategy for any ¢ € I, which implies that f;(-|h,_1) is a Nash equilibrium given the
payoff g;(hi_1,-) in the subgame h;_;.

Step 3. For any (hy_1, ;) € Gr(A,),

Pt(ht—la $t) = Qt—l—l(ht—h Lty St)fto(dstlht—l)-
St

By Lemma 5, there exists a Borel measurable mapping ¢ from Gr(F;) x S; to R" such
that

L. Q(ht—l,xue, St) € Qt+1(ht—1,$t78t) for any (ht—laxhea St) € GF(Pt) X S

2. e = fst q(hi—1, x4, €, 8¢) fro(dse|hy—q) for any (hy_1, x4, €) € Gr(P;), where (hy_1,x;) €
Gr(At).

Let
Qt+1(ht717 Ty, St) = Q(htfla Ty, gt(htfla ﬂUt), St)

for any (h¢_1,x¢, s¢) € Hy. Then ¢4 is a Borel measurable selection of (.

For (h/t—lyxt) € Gr(At>’
Gi(hi—1, ) :/ q(hi—1, e, ge(heo1, 1), 8¢) fro(dse|her)
St

:/ QtJrl(htfl;xt;St)ft(](dst’htfl)-
St

Therefore, we have a Borel measurable selection g1 of Q;11, and a Borel measurable
mapping f;: Hi_1 — ®QierM(Xy;) such that for all hy_y € H,_,, properties (1)-(3) are
satisfied. The proof is complete. ]
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If a dynamic game has only T stages for some positive integer T° > 1, then let
Qri1(hr) = {u(hr)} for any hy € Hp, and Q; = ®(Q441) for 1 < ¢t < T — 1. We can
start with the backward induction from the last period and stop at the initial period,
then run the forward induction from the initial period to the last period. Thus, the

following result is immediate.

Proposition B.4. Any finite-horizon dynamic game with the ARM condition has a

subgame-perfect equilibrium.

B.4.3 Infinite horizon case

Pick a sequence £ = (&1,&,...) such that (1) &, is a transition probability from H,,
to M(X,,) for any m > 1, and (2) &, (Am(hm—1)|hm-1) = 1 for any m > 1 and h,,—; €
H,, 1. Denote the set of all such £ as T.

Fix any t > 1, define correspondences = and Al as follows: in the subgame h;_1,
=i (hi-1) = M(Ae(he1)) @ A,
and
Af(hi—1) = M(Ay(hy-1)) @ fio(he-1).

For any m; > t, suppose that the correspondences =™ ' and A7"~! have been
defined. Then we can define correspondences =Z"': H, ; — M (Htgmgml(Xm X Sm))
and A7 : Hyy = M ([T,cppem, (Xm X Sm)) as follows:

= (he—1) ={g(he-1) © (Emi (-1, 7) @ Ay )
g is a Borel measurable selection of =,

&m, is a Borel measurable selection of M(A,,,)},

and

A;nl (htfl) :{g(htfl) <& (€m1 (hft717 '> ® fmﬂ)(htfl: )) .
g is a Borel measurable selection of A?”_l,

&m, is a Borel measurable selection of M(A,,,)},

where M(A4,,,) is regarded as a correspondence from H,,, _; to the space of Borel
probability measures on X,,,. For any m; > ¢, let ,07(7;_1 ¢ € =" be the probability

measure on Htgmgml(Xm X Sy,) induced by { A\ b<mem, and {&n b e<m<m,, and Qm_hé) €
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A" be the probability measure on Htgmgml(Xm X Sp) induced by {fino}i<m<m, and
{&n}i<mem,. Then, =" (hy_1) is the set of all such pﬁt—l,f)’ while A{™ (hy_1) is the set
of all such o) | . Note that o} . € A" (he—1) if and only if pj3} | o € E{" (he).
Both o' . and p{;. . can be regarded as probability measures on Hy, (hi—1).

Similarly, let pg, ,¢) be the probability measure on [[,,(Xm X Sp) induced by
{Antmee and {§m }m>t, and o, _, ¢) the probability measure on [, 5, (X, x S,,) induced
by {fmo}m>t and {&, }m>t. Denote the correspondence

= Hy oy — M(H(Xm X Sn))

m>t

as the set of all such p,,_, ¢), and

Ay He oy — M(H(Xm X Sn))

m>t

as the set of all such o, ¢).

The following lemma demonstrates the relationship between g?;;_l 6 and p?;‘;_l 6)-
Lemma B.7. For any my >t and hy_1 € Hy_4,
m _ m 4
Ohe1,6) = ( [T emolhus, ')> © Plhy_1.6)
t<m<my

Proof. Fix £ € T, and Borel subsets C,, C X,,, and D,,, C S,, for m > t. First, we have

Ohe1.6)(Cr X Dy) = &(Cilhy—1) - fro(Delhi1)

:/X . Lo, xn, (e, 5¢) 10 (Pe—1, 80)(§e(he1) @ M) (d(y, 51)),

which implies that Ql(thtfl,g) = @(hi_1,) 0 pléht—hf)'{s

4For m >t >1and hy_; € H;_1, the function ,,0(h¢_1,-) is defined on H,,_1(h¢_1) X Sy, which
is measurable and sectionally continuous on Ht<k<m_1 Xj. By Lemma 3, @,,0(hi—1, ) can be extended
to be a measurable function @,,0(ht—1,) on the product space (Ht<k<m71 Xk) X (Ht<k<m Sk), which
is also sectionally continuous on Htgkgm—le' Given any & € T, sir.lce p?;:b:n—lvf). .concentra"ces on
H,,(hi—1), pmo(hi—1,") © p?;lt—17€) = Gmo(hi—1,") © p?}“ihg). For notational simplicity, we still use
©mo(hi—1,), instead of Ho(hi—1,-), to denote the above extension. Similarly, we can work with a

suitable extension of the payoff function u as needed.
For a set A in a space X, 14 is the indicator function of A, which is one on A and zero on X \ A.
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Suppose that Q?;Lj_hg) = (Ht§m§m2 Omo(he—1, )) o 'O?;i_l,é) for some mqy > t. Then

Q?}Lj—"_ll’g) ( H (Cm X Dm)>

t<m<mao+1

- Q?;Lifuﬁ) © (£m2+1(ht*1’ ) ® f(m2+1)0(ht717 )) ( H (Cm X Dm))

t<m<ma+1
= / / 1Ht§mgm2+1(CmXDM)(xt7 co s Tmo41, Sty - vy sz-‘rl)'
Htﬁmfmz (XmXSm) Xm2+1><5m2+1
§m2+1 ® f(m2+1)0(d(33m2+1, 8m2+1)|ht—17 Tty vooy Timgs Sty - - - 7Sm2)
ma2
Q(ht_hg)(d(xt? <oy Tmgy Sty e e vy Sm2)|ht—1)
- / / / 1Ht§m§m2+1(CmXDm)($t’ ooy Tmg41, Sty - - - ,Sm2+1)'
[i<me<my (XmxSm) J Smyt1 J Xmy 11
P(ma+1) (ht*b Lty ooy Tmgy Sty - - - 3m2+1)€m2+1(dxm2+1‘ht*17 Ttseoos Tmgs Sty -+ oy Sm2)

/\(mg-l—l d8m2+1 | | QDmO ht 1y Lty s Tm—1y Sty -+« Sm)
t<m<myo

Plney o)A@ty Ty Sty -y Smy) 1)

/ 1Ht§m§m2+1(CmXDm)(l‘t7 co oy Lo 41y Sty - - oy Sm2+1)'
Ht§m§m2+l(Xm><S’m)

H me(](ht—laxtw"Jxm—lustv”'a )p(ht 15)(d(xt7"'7xm275t7"'75m2)|ht—1)7

t<m<mo+1

which implies that

mao+1 att
Q(hi:,ﬁ) B < H gpm()(htl")) O’O(hi+1’£)

t<m<ma-+1

The proof is thus complete.

]

The next lemma shows that the correspondences A;™ and A; are nonempty and

compact valued, and sectionally continuous.

Lemma B.8. 1. For anyt > 1, the correspondence AJ"' is nonempty and compact

valued, and sectionally continuous on X! for any m; > t.

2. For any t > 1, the correspondence A; is nonempty and compact valued, and

sectionally continuous on X' 1.

Proof. (1) We first show that the correspondence =" is nonempty and compact valued,
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and sectionally continuous on X*~! for any m; > t.

Consider the case m; =t > 1, where

Ei(he-1) = M(Ag(he-1)) @ A

Since A;; is nonempty and compact valued, and sectionally continuous on X'~ ! =! is
i1 ) ) t

nonempty and compact valued, and sectionally continuous on X*~1.

—mse

Now suppose that Z;** is nonempty and compact valued, and sectionally continuous
on Xt ! for some ms >t > 1. Notice that

= (o) ={g(r-1) © Emya (1) © Mg
g is a Borel measurable selection of =2,

Ema+1 18 a Borel measurable selection of M(A,,,11)}-

First, we claim that H;(sg,s1,...,s;) is compact for any (sg,s1,...,5:) € S*. We

prove this claim by induction.

1. Notice that Hy(sg) = X for any sq € Sy, which is compact.

2. Suppose that H,(So, 51, .,Sm) is compact for some 0 < m’ < t — 1 and any

(50,81, 8m) € S™.

3. Since A,41(+, S0, 81, - -+, Sm) 1s continuous and compact valued, it has a compact
graph by Lemma 2 (6), which is H,,11(S0, S1, - - -, Spw11) for any (sg, s1,. .., Spry1) €
SmiHL

Thus, we prove the claim.

Define a correspondence Al from H; 1 x S; to X; as AL(hy_1,8;) = Ai(hi—1). Then
Al is nonempty and compact valued, sectionally continuous on X; 1, and has a B(X" x
S?)-measurable graph. Since the graph of Al(- sg,s1,...,8:) is Hy(so, S1,...,8;) and
Hy(sg, 81, - --,8¢) is compact, AL(- sg,$1,...,8;) has a compact graph. For any h; ; €
H; 1 and 7 € Zf(hy_1), the marginal of 7 on S; is A, and 7(Gr(AL(h_1,-))) = 1.

For any m, > t, suppose that the correspondence

has been defined such that
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1. it is nonempty and compact valued, sectionally upper hemicontinuous on X; 1,
and has a B(X™~! x S™~1)measurable graph;
2. for any (sg, 51, .. -Smi—1), A" (-, 80,51, ... .5m,—1) has a compact graph;

3. for any hy_; € H,_y and 7 € 2" '(h,_,), the marginal of 7 on Ht§m§m1—1 S, 1s

®t<m<my—1Am and T(Gr(A;nl_l(ht_l, ) =1
We define a correspondence Ay"': Hy 1 X Ht§m§m1 S, — Ht§m§m1 X,,, as follows:

AT (hy1, Sty e ey Smy) ={(@g, oo Ty )
LTy € Aml(ht—la Lty ov oy Tmg—15Sty - -+ Sm1—1)7

(Ttr- s T 1) € AT By 1,50,y S 1)}

It is obvious that A" is nonempty valued. For any (s, s1,. .., Sm, ), since A" (-, 50, 51, . . .

has a compact graph and A, (-, S0, S1, .., 8m,—1) is continuous and compact valued,
A7 (-, S0, 515 - - - -Smy ) has a compact graph by Lemma 2 (6), which implies that A" is
compact valued and sectionally upper hemicontinuous on X;_;. In addition, Gr(A;"') =
Gr(A,,,) X Sp,, which is B(X™ x S™)-measurable. For any h, ; € H; ; and
7 € E{" (hi-1), it is obvious that the marginal of 7 on [[,.,,<, Sm 18 ®t<mem, Am and
T(Gr(A7" (hi—1,+))) = 1.

By Lemma B.5, Z/>™ is nonempty and compact valued, and sectionally continuous
on X1

Now we show that the correspondence A;™ is nonempty and compact valued, and
sectionally continuous on X*~! for any m; > t.

Given s7! and a sequence {xf, x5, ... 2F |} € H,_((s77!) for 1 <k < oo. Let hf | =
(s (xk, b ... aF |)). Tt is obvious that A" is nonempty valued, we first show that
A" is sectionally upper hemicontinuous on X*~!. Suppose that QE’Z}G ey € AT (hE )

t—1°
for 1 <k <oocand (zf,2F,... 28 ) = (25°,25°,...,2%°,), we need to show that there
exists some £*° such that a subsequence of QZLL}g €5
t—1>
Q’ET;"%ED&OO) € AP (hi2y).

1

weakly converges to g’(?é.iléoo) and

Since 2" is sectionally upper hemicontinuous on X*®~! there exists some £ such

mi1 : mi 1
that a subsequence of Pk, gvyr S itself, weakly converges to Plhe , £ and Pl , ey €

=7 (1), Then ke ey € AP (%)),
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For any bounded continuous function ¢ on [[,<,,<,n, (Xm X Sm), let
Xk(xt7 A 7‘/'Um17 St? et Sml) =
k
V(T o Ty Sty v e vy Sy ) - H Omo(hy 1, Tty oo T, Sty oo oy Sm)-
t<m<my

Then {xx} is a sequence of functions satisfying the following three properties.

1. For each k, xy is jointly measurable and sectionally continuous on Ht<m<m1 Xon-

k k (o) 0 ;
2. Forany (st,...,8m,) and any sequence (z7, ..., 2y, ) = (5%, ..., 20 ) in [, Xom,
k k 00 oo
Xk(ZF s T S5 Smy) = Xoo (20, .o, T58 5, oo, 5y ) @8 k — 00.

3. The sequence {xx}i<k<oo is integrably bounded in the sense that there exists a
function X" [[,<p<pm, Sm — Ry such that X' is ®s<m<m, Am-integrable and for any

kEand (4, ..., Tmyy Sty Smy )y Xk(Tes ooy Tings Sty e vy Sy ) < X (Sty -+ s Sy )-

By Lemma B.6, as kK — o0,

Xk(xta <oy Tmyy Sty e ey Sml)p?flllitl,fk)<d(xt’ <oy Tmyy Sty e ey Sm1>)

/Ht<m<m1(xm><5m)

— Xoo(Tty oy Tonys Sty v+ vy Sy ) P11 h°° %) (d(a:t,...,mml,st,...,sml)).
Htsm§m1(Xm><Sm)

Then by Lemma B.7,

/]‘[ s )w(a:t, ey Ty Sty - 75m1)97(7;%7175k)(d(37t= e Ty Sty - -y Smy))
t<m<my XOm

- w<xt7 ce s Ly Sty - vy Sml)Q?}g’ipéoo)(d('xta ce sy Ty Sty - - >Sm1))7
Ht<m<m1 (XmXSm)
which implies that Q(hk ) weakly converges to QZLZ},O £y Therefore, A;™ is sectionally
1
upper hemicontinuous on X*~!. If one chooses hi | = h? | =--- = h$°,, then we indeed

show that AJ"' is compact valued.

In the argument above, we indeed proved that if p7} weakly converges to

(h§71 7£k)

m1i 11
Pl | ey then Ok 60 weakly converges to Q(hoo £%)

The left is to show that A" is sectionally lower hemicontinuous on X*™1. Suppose

that (zf b, ... 2% ) — (25, 2%,...,2%°,) and Q’(Z}ilém) e A" (h2,), we need to
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show that there exists a subsequence {(zf™, z%™, ... aF)} of {(zk, 2% ... zF )} and

" € A7 (b)) for each k,, such that o”

Q(hkm £hm) weakly converges to g(

(h’“m Ehm) h°° 1:€%°)

=mi1

Since g(hoo =) € A (hi2y), we have piy (hee, £) € =7 (h2y). Because =" is section-

ally lower hemicontinuous on X*~! there ex1sts a subsequence of {(af z% ... 2F )},
€ E?“(hfﬁl) for each k such that p?;ﬁ )
t—1>
weakly converges to g?,;tol £o)) which implies that A} is
t—1°

say itself, and pZ‘L}C weakly converges to

£F)

p(hoo £)- Asaresult g LR

sectionally lower hemlcontlnuous on X1,
Therefore, A"* is nonempty and compact valued, and sectionally continuous on X*~*

for any m, > t.

(2) We show that A, is nonempty and compact valued, and sectionally continuous

on X' 1.
It is obvious that A; is nonempty valued, we first prove that it is compact valued.

Given h;_; and a sequence {7*} C A;(h;_;), there exists a sequence of {¢¥};>; such
that £&¥ = (£§,&5,...) € T and 7% = g3, , ¢x) for each k.

By (1), Zf is compact. Then there exists a measurable mapping g; such that (1) ¢* =
(& 6196641, --.) € T, and (2) a subsequence of {pfht—hfk)}’ say {pzht,l,fkll)}lzl’
which weakly converges to pfht_h g Note that {¢f.1} is a Borel measurable selection
of M(A;11). By Lemma B.5, there is a Borel measurable selection g4 of M(Ay 1)
such that there is a subsequence of {p(ht 5k11)}l21’ say {pzjih gkzz)}lzlv which weakly
CONverges to p(h 1,9t+1)? where g (51’ s 76151—17 9ts 9t+1, §t1+27 . ) eT.

Repeat this procedure, one can construct a Borel measurable mapping g such that

Plho_1,611)s Plhy_1,6522)5 Plhy 1 ,ks3), - - - Weakly converges to pm, , g). That is, pp, ) 1s a
convergent point of {p(, , ¢r)}, which implies that o, , 4 is a convergent point of

{0169}

The sectional upper hemicontinuity of A; follows a similar argument as above. In

particular, given s'~! and a sequence {zf,x%, ... 2F |} C H; 1(s'1) for k > 0. Let
hffl = (St_17 (xlgu xlfa ce 7‘1”7]&{;1))' Suppose that (l’]g, xlfv ce 7‘7"1]521) - (1’8, x(l)7 ce ngfl)‘ If

{mF} C Ay(hE ) for k > 1 and 7% — 7°, then one can show that 70 € A;(h) ,) by

repeating a similar argument as in the proof above.

Finally, we consider the sectional lower hemicontinuity of A;. Suppose that 70 €

Ay(h?_ ). Then there exists some ¢ € T such that 70 = 0wy ,.¢)- Denote 7™ = 0/Go o €
—1> +—17

A™(RY_,) for m > t. As AT is continuous, for each m, there exists some ™ € T such

that d(o™ ,7™) < =+ for ky, sufficiently large, where d is the Prokhorov metric. Let

O(pfem, gmy
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™ = O(hkm emy- Then 7™ weakly converges to 7°, which implies that A, is sectionally

lower hemicontinuous. O]

Define a correspondence Q7 : H;_; — R’} as follows:
Qf (hy—1) =

{meZt(X’mXSm) u(ht*hx? S)Q(htq,ﬁ)(d(xv 3)): O(ht—1,6) € At(ht*ﬁ}; >
(I)(QtTH)(ht—l) t<T.

The lemma below presents several properties of the correspondence ()] .

Lemma B.9. For any t,7 > 1, Q] is bounded, measurable, nonempty and compact

valued, and essentially sectionally upper hemicontinuous on X' 1.

Proof. We prove the lemma in three steps.

Step 1. Fix t > 7. We will show that )] is bounded, nonempty and compact valued,

and sectionally upper hemicontinuous on X1

The boundedness and nonemptiness of ()7 are obvious. We shall prove that () is sec-
tionally upper hemicontinuous on X*~!. Given s'! and a sequence {xf, 2% ... 2F |} C
H; 1(st71) for k > 0. Let hf | = (s, (xf, 2%, ..., 2F |)). Suppose that a* € Q7 (h} )
for k > 1, (af 2% ... 2F ) — (28,29,...,2% ) and a* — a°
a’ € Q7 (hy_,).

By the definition, there exists a sequence {£¥},>; such that

, we need to show that

o = / w1, 7, 8)00s . ety (A, 5)),
[T>(Xm X Sm)

where &8 = (&b ¢k ..)) € Y for each k. As A; is compact valued and sectionally
continuous on X'~ there exist some g(0_ co) € A¢(hy_;) and a subsequence of O(hk_ ks

say itself, which weakly converges to g0  ¢o) for O =(,8,..)eT.
We shall show that

o = / u(h) 1.2, 8)aus - ez 5)).
Hmzt(XmXSm)

For this aim, we only need to show that for any ¢ > 0,

o~ [ (b, 5)eq. (A, 9)| < ®)
Hmzt(X"” XS"L)
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Since the game is continuous at infinity, there exists a positive integer M > ¢ such
that w™ < %(5 for any m > M.

For each j > M, by Lemma 3, there exists a measurable selection & of M(A;)
such that &} is sectionally continuous on X7~'. Let pu: Hyy — [, 5(Xim X Sp) be the

transition probability which is induced by ( ;\ZH’ §\~4+2, ...) and {f(M+1)0> fori2)00 - -}

By Lemma 9, i is measurable and sectionally continuous on X M Let
Vig(he—1,@ey oo Ty, Sty oo, Syp) =

/ W(he—1, Tey ooy Tygy Sty vy Syps @5 8) A, S|hy—1, Tty oo gy Sty v vy Sp7)-
ILs 5 (Xm X Sm)

Then Vj; is bounded and measurable. In addition, V; is sectionally continuous on X M
by Lemma B.6.

For any k£ > 0, we have

|/ (s, 5)eq o (09))
[L5(XmXSm)

_\/1_[ (X S )VM(hf—17xt""71‘]\2’875""78](4)@%?17£k)(d-('rt7"'7xM7St;"'7SM))|
t<m< i1 (KXmXOm
< wM+1
1
< 0.
5)

: M
Since O(nk_, ¢¥) weakly converges to O(ho_, £0) and Ok, )

is the marginal of or ek

on [[,c,,<ir(Xm X Sp,) for any & > 0, the sequence Q?Zk ) also weakly converges to
<m< ko

1:E"

Qé\}{g_pﬁo). By Lemma B.6, we have

‘ I (XS )VM(hf_l’xt""’xM’St""’S]\;[)Qé\}{fl,fk)(d(:[;t?"'7xM7St7"'7S]\;[))
t<m< i (KXmXom

_/H s )VM(h?1;371‘,7...,Z'Mast,...,sj\?[)@?}{g1750)((1(1'1/,...,:L'M,St"”,sM))’
t<m< M \AmXOm

1
< =0

5

for k > Ky, where K is a sufficiently large positive integer. In addition, there exists a
positive integer K5 such that [a" — a®| < 20 for k > K.
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Fix k > max{K;, K»}. Combining the inequalities above, we have

0

/1;[ (X 3 )u(htflwr?é)é(h? 1750)(d(l’,8)) —Qa

m>t m XOm -

< ‘ / (X S )U(ht 1> ’ ) (hg_17§0)(:l(:[73))
m>t m XOm

_ / Vig(hY L xe, w, 8, SM)Q?]{?_Pgo)(d(ZL‘t, T S Sy)|
HiSWLSM(XmXSm)

‘ H (X S ) ~(ht—17xt7--'7vast>'"75]\2)&?]{?71760)((1(1'159'"75[](473757'-" Z\Zf))
t<m<M mXOm S
/ ( ) )‘/M(hf_l,l‘t7-..,ZEM,St,-..,SM)Q?}{? L k)((]‘(ajt"‘W'IM)st,--.,9M))|
IIt<m<1\~4 ‘<m)< m — E
—}—’ ( . )‘/~(]’Lic 1’1',57...,.’L'M,Sty-..,sM)Q?}{f l’fk)(d(xt,...,.TM,St7...,SM))
IIt<m<]V_I Xm X Sm -

-/ by 5)og, e o 9)|
[15 ¢ (XmxSm)
T / u(ht 1, 7, 8o ony(dz, ) — o)
[1,5 ¢ (XmXxSm)
< 0.

Thus, we proved inequality (2), which implies that @7 is sectionally upper hemicontinu-

ous on X! fort > 7.

Furthermore, to prove that ()] is compact valued, we only need to consider the case

that {xf, %, ... 2F |} ={28,29,...,2) |} for any k > 0, and repeat the above proof.

Step 2. Fix t > 7, we will show that )] is measurable.

Fix a sequence (£1,&5, .. .), where £} is a selection of M(A;) measurable in s7~1 and

continuous in 27~! for each j. For any M > ¢, let

M
Wi (he—1,Tey o Tagy Sy ey SM) =

/ u<ht—l> Ttye o s TM5 Sty -+ SM, T,y S)Q(htq,rrt,-~~790M,St,~~-,8M,5’)(d(ajv 3)) .
[Ts a (Xm X Sm)

By Lemma 9, 0(h,_, a:,...o0150,..50,¢") 15 Measurable from Hy to M (Hm>M(Xm X Sm)),
and sectionally continuous on X*. Thus, W is bounded, measurable, nonempty,

convex and compact valued. By Lemma B.6, W}/ is sectionally continuous on X*.
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Suppose that for some t < 57 < M, WJ{/[ has been defined such that it is bounded,
measurable, nonempty, convex and compact valued, and sectionally continuous on X7,
Let

Jj—1 —
WM (ht,1,$t, e L1, Sty ey 8j,1> =

{ /X ) Wiy (M1, ey oo, T4, St - - 7Sj)Qth,l,mt,...,zj_l,st,‘..,sj_l,g)(d(xjv si)):
S

J
¢ < Aj<ht717xt7 RN 71}]‘,1,St, RN ,Sj,l),

Q(ht71ﬂﬁt,m@j—l,St,-n,sj—l, )

w), is a Borel measurable selection of W3, }.
Let S; = S;.% Since
J ‘ Vol g

/ (TR P AR ¢ FR )

X;xS;

, N -y
/ /X s ht LTty ee ey Ly Sty e vy SJ)p(ht_l,xt,...,xj,l,st,...7sj,1,g)(d(xj’ 35))
X

. (;OjO(ht—la Tyoo oy Lj—1ySty -+ -, S]))\J(dsj)v

we have

ht 17xt7'"axj—lasty"'asj—1> =
{/ / ht 17'It7~--7$ja8t7"'aSj)tht_l@t,m’xjil7St7,,,73j71’€)(d(xjvéj))
X ><S

. SOjO(ht—la Tyonn ,l’j_l, Styeny Sj))\j(de) .

=J ) .
p(htflwta---axj—l75t7---75j—1=f) € '_'j(ht_l’ Lty ooy Tjm1s St - - - ’83_1>’

w), is a Borel measurable selection of W3, }.

Let
177 _
WM(ht—la Ty ,l’j_l, Sty onn ,Sj) =

{ /X ; Wiy (-1, Tey oo T, Sty oy S5) - pihtfl,zt,...,xj,l,sm...,sjq,é) (d(z;,54)):
3

=J . .
p(htfl,It,m,fﬂjfl7St,~~-,8j717§) S ‘—‘j(h’t—b Ly 7'/17]—17 Sty .- 7SJ—1)7

6We will need to use Lemma B.2 below, which requires the continuity of the correspondences in terms
of the integrated variables. Since W7, is only measurable, but not continuous, in s;, we add a dummy

variable §; so that W73, is trivially continuous in such a variable.
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w), is a Borel measurable selection of W3, }.

Since Wi, (ht—1, ¢, ..., Tj, St, ..., s;) is continuous in x; and does not depend on §;, it is
continuous in (x;, 3;). In addition, W3, is bounded, measurable, nonempty, convex and
compact valued. By Lemma B.2, W, is bounded, measurable, nonempty and compact

valued, and sectionally continuous on X771,

It is easy to see that

Jj—1 _
WM (ht—la Ty ,Z’j_l, Sty 8]’_1) =

/ W]]\%(ht—ly Ty ,[Ej_l, Sty .nn ,Sj)(pjo(ht_l, Ty ,l’j_l, Styeny Sj))\j(de).
Sj

By Lemma 4, it is bounded, measurable, nonempty and compact valued, and sectionally
continuous on X7~!. By induction, one can show that ngl is bounded, measurable,

nonempty and compact valued, and sectionally continuous on X*~ .

Let Wit = Uy Wit That is, Wt is the closure of Uy Wi, which is

measurable due to Lemma 2.

First, W1 C Q7 because Wi, ' C Q7 for each M >t and Q7 is compact valued.
Second, fix h;_1 and ¢ € Q] (h;—1). Then there exists a mapping £ € T such that

q = / U/(ht_l?x?S)Q(htflvf)(d(x78))'
Hmzt(XmXSm)

For M > t, let
VM(ht—laxtw"7'rM78t7"'7SM) -

/ u(htfla Tty oo oy TMyStye -, SMy Ty 8>Q(ht71773t7---733]\/115ta---751v115) ($, S)
[T a1 (X X Sm)

and

M = / Var(hi-1, 2, S)Q%t_l,g)(d(% s))-
[i<m<ns (XmxSm)

Hence, gy € W;, ! Because the dynamic game is continuous at infinity, ¢a; — ¢, which
implies that ¢ € W 1(h;_1) and Q7 C WL

Therefore, W1 = Q7, and hence Q7 is measurable for ¢ > 7.

Step 3. For t < 7, we can start with QQ7,,. Repeating the backward induction in

Subsection B.4.1, we have that ()] is also bounded, measurable, nonempty and compact
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valued, and essentially sectionally upper hemicontinuous on X*~!. [

Denote
i_lv i ﬁ7'21 Qz — @a

Nr>1Q7, otherwise.

Q=

The following three lemmas show that Qf°(hi—1) = ®(Q53,)(hi—1) = Ei(hy—1) for A'71-
almost all hy_q € H;_;.7

Lemma B.10. 1. The correspondence Q5° is bounded, measurable, nonempty and

compact valued, and essentially sectionally upper hemicontinuous on Xt1.

2. Forany t > 1, Q°(hi—1) = ®(Q%1) (he—1) for X~ -almost all hy—y € Hy_1.

Proof. (1) Tt is obvious that Q% is bounded. By the definition of Q7, for A'"!-almost
all hy—y € Hiq, Q7' (hy—1) C Q7 (hy—1) for 74 > 7. Since @] is nonempty and compact
valued, Q° = N,>1Q7 is nonempty and compact valued for \X'"!-almost all h;_; € H;_;.
If N;51Q7 = 0, then Q¥ = Q!~'. Thus, Q*(h;_1) is nonempty and compact valued
for all hy—y € H;—1. By Lemma 2 (2), N;>1Q7 is measurable, which implies that Q° is

measurable.

Fix any s'~! € S! such that Q] (-, s"" ') is upper hemicontinuous on H; ;(s'!) for
any 7. By Lemma 2 (7), Q7(-,s""!) has a closed graph for each 7, which implies that
Q> (-, s'™1) has a closed graph. Referring to Lemma 2 (7) again, Q°(-,s*"!) is upper
hemicontinuous on H; ;(s'™!). Since Q7 is essentially upper hemicontinuous on X*~! for

each 7, Q% is essentially upper upper hemicontinuous on X1,

(2) For any 7 > 1 and A '-almost all by € Hy_1, ®(Q%,)(hi—1) C ®(Qy ) (he—1) C

Q7 (h-1), and hence ®(Q7;)(hi-1) € QF°(he-1).

The space {1,2,...00} is a countable compact set endowed with the following metric:
d(k,m) = |t —L|forany 1 < k,m < co. The sequence {Q7 1 }1<r<c can be regarded as a
correspondence Q41 from Hy x {1,2,... 00} to R™, which is measurable, nonempty and
compact valued, and essentially sectionally upper hemicontinuous on X* x {1,2,...,00}.
The backward induction in Subsection B.4.1 shows that ®(Qy1) is measurable,
nonempty and compact valued, and essentially sectionally upper hemicontinuous on

Xt x{1,2,...,00}.

"The proofs for Lemmas B.10 and B.12 follow the standard ideas with various modifications; see, for
example, [3], [4] and [5].
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Since ®(Qy41) is essentially sectionally upper hemicontinuous on X* x {1,2,..., 00},
there exists a measurable subset S*' C S*' such that A~'(S*™') = 1, and
B(Qus1)(-,-, 57 ") is upper hemicontinuous for any 5! € S*~!. Fix 5! € S*~!. For
hey = (271,87 € Hiy and a € Q®(hi_y), by its definition, a € Qf(h1) =
O(Q7,1)(hy—1) for 7 > t. Thus, a € P(Q% ) (hu—1)-

In summary, Q3°(hi—1) = ®(Q53,)(hi—1) for X'~ '-almost all hy_1 € Hy_;. O

Though the definition of )] involves correlated strategies for 7 < ¢, the following
lemma shows that one can work with mixed strategies in terms of equilibrium payoffs

via the combination of backward and forward inductions in multiple steps.

Lemma B.11. If ¢; is a measurable selection of ®(Qy%,), then ci(hi—1) is a subgame-

perfect equilibrium payoff vector for Xt=‘-almost all hy_, € H;_;.

Proof. Without loss of generality, we only prove the case t = 1.

Suppose that ¢; is a measurable selection of ®(Q5°). Apply Proposition B.3
recursively to obtain Borel measurable mappings { fi}ier for & > 1. That is, for any
k > 1, there exists a Borel measurable selection ¢ of Q7° such that for \;_;-almost all
hp—1 € Hi1,

1. fe(hg—1) is a Nash equilibrium in the subgame h;_;, where the action space is

Api(hy—1) for player ¢ € I, and the payoff function is given by

/ Crr1(Pi—1, -, Sk) fro(dsg|hk—1)-
Sk

Ck(hkz—l):/ / Cht1(P—1, Tk, Sk) fro(dsk|he—1) fi(dag|hk—1).
A (hr—1) v Sk

We need to show that ¢;(hg) is a subgame-perfect equilibrium payoff vector for Ag-almost
all hg € Hy.

Step 1. We show that for any k£ > 1 and A\y_;-almost all by € Hy_4,

cp(hg—1) = / w(hi—1,2,5) 0, ,,p)(dx,s)).
[Tk (Xim X Sm)

Since the game is continuous at infinity, there exists some positive integer M > k such
that w? is sufficiently small. By Lemma B.10, cx(hr—1) € Q°(hr—1) = Nr>1Q%(hr_1)
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for A\y_j-almost all hy_y € Hj_q. Since Qp = " FHQr ) for k < 7, cp(hy—1) €
ﬂTZkéT‘kH( ;+1)(hk_1) - (I)M_k+1(Q%+1)(hk_1) for A\p_j-almost all hp_y € Hj_q.
Thus, there exists a Borel measurable selection w of Q}7,, and some £ € T such that

for A\pr_1-almost all hy;_1 € Hyr_q,

i. far(hpr—1) is a Nash equilibrium in the subgame hj;_1, where the action space is

Anri(har—1) for player i € I, and the payoff function is given by
/w(hMla'75M)fM0(d3M’hM1);
Sm
ii.

CM(hM—l):/ / w(hM—laxM7SM)fMO(dSM|hM—1)fM<d17M‘hM—1>;
Aprr(hpi—1) Y Sm

iii. w(hy) = mezMH(meSm) w(har, ©, 8)0(hay ) (A, 9)).

Then for A\i_i-almost all hyp_1 € Hj_1,
cr(he—1) = / u(hg-1,2,8)owm,_, pry(dz, s)),
HmZk(meSm)
where fM is f if k < M, and & if k > M + 1. Since the game is continuous at infinity,

/ U(hk,1,$, S)Q(hk_l,fM)(d(x7 S))
HnLZk(X"LXSm)

converges to

/ U(hk—lvxvS)Q(hk_l,f)(d(x7s))
[Ln>k (XmXSm)

when M goes to infinity. Thus, for A\y_j-almost all h,_; € Hy 4,

cr(hi-1) = / u(h—1,7,8)0(h,_,,p)(dz, 5)). (3)
ngk(XmXSm)

Step 2. Below, we show that { fx;}ics is a subgame-perfect equilibrium.

Fix a player i and a strategy g; = {gri}x>1. For each k > 1, define a new strategy fik
as follows: f¥ = (g1, ..., ri, fte+1yis fk42)i» - - -). That is, we simply replace the initial &
stages of f; by ¢;. Denote f* = (fF, f_).
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Fix k > 1 and a measurable subset D* C S* such that (1) and (2) of step 1 and
Equation (3) hold for all s, € D* and 2 € Hy(s*), and A*(D¥) = 1. For each M > k, by
the Fubini property, there exists a measurable subset E,Jfl C S* such that \* (E,i‘/[ ) =1
and ®,, 1< (DM (s¥)) = 1 for all s* € EM where

DM (%) = {(sp1s- -5 857): (8% sk, ..., 85) € DMY.
Let DF = (N5- E}) 0 D*. Then \(DF) = 1.
For any hy, = (2%, s*) such that s* € D* and 2% € Hy(s*), we have
/ lh7,9)00.p (A 5)
Hm>k+1(X'm><Sm)

= / / Clkr2)i Py T 1, k1) fie1)0 (AS ki1 k) frogr (i [ )
Apg1(hg) v Skt

> / / Cl+2)i (Pes Tt Sk) Firr 1o (At [B) (Firn)(—i) @ Goesryi) (Apsr )
Agt1(hg) J Sp4a

=/ / / / Clh+3)i (P, Tha 1, Skt Tht2, Skt2)
Apy1(he) I Skr1 Y Agyo(hi,Tri1,8641) Y Sk

Joer2y0(dskralhi, Trgts Ski1) frr2) (=) @ frer2)i(dTrgal by Trg1, Ska1)

Je+nyo(dser1|he) frr1)(—i) @ gt 1)i(ATrgr|r)

Z/ / / / Clit3)i (M Thog 1, Skt 1, Thy2, Skg2)
Apy1(he) I Sky1 Y Ao (hi,Tri1,5041) Y Sk

Je+2)0(dspp2| P, Trot, Skt1) Fier2)(—i) @ grr2)i(ATpgal P, Thgrs Spa1)

Joer1yo(dse1|Pe) fer1) =) @ gog1yi(ATrgr|r)

— / u(hg, z, 8)og, freoy(d, s)).
H'm>k+l(Xm><Sm)

The first and the last equalities follow from Equation (3) in the end of step 1. The second

equality is due to (2) in step 1. The first inequality is based on (1) in step 1. The second
inequality holds by the following arguments:

i. by the choice of hy and (1) in step 1, for A\xii-almost all s;1 € Spyq and all
Tpy1 € Xpy1 such that (hg, Tri1, Skr1) € Her1, we have

/ / C(k+3)i (P, Thoy1, Skr1, Thop2, Skp2)
Apqo(hrTrt1,56+1) 7 Skyo

Joe+2)0(dSk2| ks Trs1, Se1) ety —i) @ foet2)i(dTrral i, Trgt, Skt1)
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> / / Clkt3)i (ks Thg 1, Skt 1, Thoy2, Skt2)
Apt2(hisZrt1,5k+1) J Sky2

Joer2y0(dskralhi, Trgt, Ska1) fer2) (i) @ rr2)i(ATra|hi, Tigr,s Spg1);

ii. since f(x41)0 is absolutely continuous with respect to Ax;1, the above inequality
also holds for f(xi1)0(hi)-almost all spy1 € Sipy1 and all 41 € Xy such that

(his Thg1s Skg1) € Hiqa.

Repeating the above argument, one can show that
/ ulls . 8)0(n 1) (. )
| I
Z/H U(hka$73)9(hk7fz\“4+1)(d(xa s))

for any M > k. Since

/ u(hk,x, S)Q(hk’fz\71+1)(d($73))
Hm2k+1(Xm><Sm)

converges to

/ u(hkhxvS)Q(hky(guffi))@(x?‘g))
Hm2k+1(Xm><Sm)

as M goes to infinity, we have

/ u(hk7xvs)9(hk,f)(d(l‘7 5))

Hm2k+1(Xm><Sm)

> / w(hi, T, 8) (ke (g3, 1-0) (AT, 8)).
[Ln> kg1 (Xm X Sm)

Therefore, { fyi}icr is a subgame-perfect equilibrium. ]

By Lemma B.10 and Proposition B.2, the correspondence ®(Q79,) is measurable,
nonempty and compact valued. By Lemma 2 (3), it has a measurable selection. Then

Theorem 3 follows from the above lemma.

Fort > 1and h;_1 € H;_, recall that E;(h,_1) is the set of payoff vectors of subgame-
perfect equilibria in the subgame h; ;. The following lemma shows that FE;(h; 1) is

essentially the same as Q7°(h;—1).

Lemma B.12. For anyt > 1, E;(hi_1) = Q°(hi_1) for X" -almost all hy_1 € Hy_;.
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Proof. (1) We will first prove the following claim: for any ¢ and 7, if Ey1(h:) € Q7. (he)
for A-almost all hy € Hy, then Ey(hy_1) C Q7 (hy_1) for X=*-almost all hy_; € H;_;. We
only need to consider the case that ¢t < 7.

By the construction of ®(Q7, ) in Subsection B.4.1, there exists a measurable subset
St=1 C St with A=1(S*~1) = 1 such that for any ¢, and hy_y = (z'~1, §"1) € H,_, with
sl e St if

Lo = fAt(htfl)fSt Gry1(he—1, 74, 8¢) fro(dsi|he—1)a(dz;), where gip1(hi—1,-) is mea-
surable and g1 (hi—1,2¢,5:) € Q7 1(hi—1,2¢,5;) for A-almost all s, € S; and
xp € Ay(hi—r);

2. @ € ®iegM(Ay;(hi—1)) is a Nash equilibrium in the subgame h;_; with payoff
fst Gr1(hi—1, -, 5¢) fro(dsi|hy—1) and action space Hig Agi(he—1),

then Ct € (I)(Q;,_l)(h't—l)-
Fix a subgame hy_; = (2'~1, §"1) such that §~! € S*~1. Pick a point ¢; € Ey(§1).
There exists a strategy profile f such that f is a subgame-perfect equilibrium in the

subgame h;_; and the payoff is ¢;. Let ¢;11(hi—1, 24, s¢) be the payoff vector induced by
{fti}ier in the subgame (hy, x4, s;) € Gr(A;) x S;. Then we have

L ¢ = fAt(ht—l)fSt Ct+1(ht—1;$taSt)fto(d3t|ht—1)ft(d$t|ht—1)§

2. fi(-|ht—1) is a Nash equilibrium in the subgame h;_; with action space A;(h;—1)
and payoff fSt Cir1(Pe_1, -, 8¢) fro(dsg|he_1).

Since f is a subgame-perfect equilibrium in the subgame h; 1, ciq(hi1, 2, 8) €
Eii(hi—1, w6, 8¢) C Q7 i (he—1, 24, 5¢) for A-almost all s, € Sy and x¢ € A(hy—y), which
implies that ¢; € ®(Q7,,)(hi—1) = QF (h4—1).

Therefore, Ey(h;_1) C QF (hs—1) for X'~ '-almost all h,_y € H; ;.

(2) For any t > 7, E, C Q7. If t < 7, we can start with E.,; C Q7. and repeat
the argument in (1), then we can show that Fy(h; 1) C Q7 (hs_1) for A"!-almost all
hi_y € Hy_y. Thus, Ey(hi_1) C Q°(hs—y) for X'"!-almost all by € H;_;.

(3) Suppose that c; is a measurable selection from ®(Q7%,). Apply Proposition B.3
recursively to obtain Borel measurable mappings { fxi}ies for £ > t. By Lemma B.11,
ct(hy_1) is a subgame-perfect equilibrium payoff vector for AX*~!-almost all h; | € H; ;.
Consequently, ®(Q2%,)(hi—1) C Ei(hi—1) for N~'-almost all b,y € H;_y.

By Lemma B.10, Ei(hi—1) = Q°(hi—1) = ®(Q%1)(he—1) for N -almost all hy_y €
H; ;. [
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B.5 Proof of Proposition B.1

We will highlight the needed changes in comparison with the proofs presented in
Subsections B.4.1-B.4.3.

1. Backward induction. We first consider stage ¢ with N; = 1.
If Ny =1, then S; = {s;}. Thus, Pi(hi_1,2¢) = Qir1(he_1, x4, ), which is nonempty

and compact valued, and essentially sectionally upper hemicontinuous on X* x St-=1,

Notice that P, may not be convex valued.

We first assume that P, is upper hemicontinuous. Suppose that j is the player who
is active in this period. Consider the correspondence ®;: H; 1 — R" x M(X;) x A(X;)
defined as follows: (v, a, ) € ®y(hy_q) if

Lov = pi(hi1, Ay—jy(he-1),x3;) such that pi(h;1,-) is a measurable selection of
Py(hi—1, ‘);8

2. xj; € Ay(hi1) is a maximization point of player j given the payoff function
Ptj(hi—1, Ay—j)(he—1),-) and the action space Ay(hi—1), & = 0a,(n,_,) for i # j

and o = 5%;
3. p= 5pt(ht—17At(—j)(ht—l)vx;(j)'

This is a single agent problem. We need to show that ®; is nonempty and compact

valued, and upper hemicontinuous.

If P, is nonempty, convex and compact valued, and upper hemicontinuous, then we
can use Lemma 10, the main result of [7], to prove the nonemptiness, compactness,
and upper hemicontinuity of ®,. In [7], the only step they need the convexity of P,
for the proof of their main theorem is Lemma 2 therein. However, the one-player pure-
strategy version of their Lemma 2, stated in the following, directly follows from the upper
hemicontinuity of P, without requiring the convexity.

Let Z be a compact metric space, and {z, }n>0 € Z. Let P: Z — Ry be a bounded,
upper hemicontinuous correspondence with nonempty and compact values. For
each n > 1, let ¢, be a Borel measurable selection of P such that ¢, (z,) = d,. If

zn, converges to zg and d,, converges to some dy, then dy € P(zp).

Repeat the argument in the proof of the main theorem of [7], one can show that ®,

is nonempty and compact valued, and upper hemicontinuous.

8Note that Ay(—j) is point valued since all players other than j are inactive.
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Then we go back to the case that P, is nonempty and compact valued, and essentially
sectionally upper hemicontinuous on X* x St=1. Recall that we proved Proposition B.2
based on Lemma 10. If P, is essentially sectionally upper hemicontinuous on X x S’t_l,
we can show the following result based on a similar argument as in Sections B.3: there
exists a bounded, measurable, nonempty and compact valued correspondence ®; from
H; 1 to R" X M(X;) x A(X;) such that ®, is essentially sectionally upper hemicontinuous
on X1 x §=1 and for N*~l-almost all h,_; € H,_;, (v, 1) € Dy(hy_y) if

L v = pi(hi1, Ay—jy(he-1),x3;) such that py(h;1,-) is a measurable selection of
Pt(htfla ');

2. xj; € Ag(hi1) is a maximization point of player j given the payoff function
Ptj(he—1, Ay—j)(he—1),-) and the action space Ay(hi—1), & = 0a,(n,_,) for i # j

and o = 5@],;
3. p= 5pt(ht—17At(fj)(ht—l)vx;‘)'

Next we consider the case that N; = 0. Suppose that the correspondence ;.
from H; to R™ is bounded, measurable, nonempty and compact valued, and essentially

sectionally upper hemicontinuous on X* x S*. For any (h,_y,x¢, 8;) € Gr(4,), let

Rt(h't717 Tt, §t> = B Qt+1(ht717 L, gtu gt)fto (d§t|ht717 T, §t)
St
:/ Qt+1(ht—1,$t,§t,§t)90t0(ht—1,fft>§t,§t))\t(d§t)'
St

Then following the same argument as in Subsection B.4.1, one can show that R; is a
nonempty, convex and compact valued, and essentially sectionally upper hemicontinuous

correspondence on X! x St

For any h; 1 € H;_1 and z; € Ay(hy—1), let

Pt(ht—b $t> = / Rt(ht—b T, §t)ft0(d§t|ht—1a il?t)-

Ago(ht—1,2t)

By Lemma 7, P, is nonempty, convex and compact valued, and essentially sectionally
upper hemicontinuous on X! x St=1 The rest of the step remains the same as in
Subsection B.4.1.

2. Forward induction: unchanged.
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3. Infinite horizon: we need to slightly modify the definition of =™ for any m; >

t > 1. Fix any ¢t > 1. Define a correspondence Z! as follows: in the subgame h;_1,
(1) = (M(Ay(hy_r)) © fto(ht—la ) ® Ay

For any m; > t, suppose that the correspondence Z" ! has been defined. Then we can
define a correspondence =" : H; 1 = M (Htgmgml (Xm X Sm)) as follows:

=7 (hit) ={g(he-1) © (Em (-1, © Frmolhi1,)) @ Ay ) :

. . —mq—1
g is a Borel measurable selection of =" ™",

&m, is a Borel measurable selection of M(A,,,)}.

Then the result in Subsection B.4.3 is true with the above =™ .

Consequently, a subgame-perfect equilibrium exists.
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