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Abstract

Bitcoin blockchain has grown into an active global virtual money network

with millions of accounts. We propose a Sparse-Group Network AutoRegressive
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(SGNAR) model to understand the dynamics of its cross-border transactions.

It describes the money flows of virtual funds, with a focus on the regional and

size effects in the Bitcoin network at a global level. In particular, we develop a

regularized estimator with two-layer sparsity, which enables discovering 1) the

active regions with influential impact on the global network and 2) the size of

the groups which lead the dynamic evolution of the Bitcoin transaction network.

Our study considers the up-to-date Bitcoin blockchain, from February 2012 to

July 2017, with all the transactions being classified into 60 groups according to

region and size. We found that mostly the users with the smallest and largest

sizes of transactions from North America, Europe, South America, Africa and

Asia were driving the Bitcoin transactions, while the other groups and all the

groups in Oceania were either followers or isolated. The global connectivity

remained low in the period from 2013 to 2015, although it was high in 2012

and enhanced in the recent years of 2016 and 2017.

Keywords: Bitcoin Blockchain, Network Dynamics, Two-Layer sparsity

JEL classification: C55, C58, C60, G17
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1 Introduction

Powered by the blockchain technology, Bitcoin (BTC) brought an innovative financial

asset class into the market. On the blockchain, BTC is transacted as a borderless

decentralized digital currency and has grown into an active global virtual money

network with millions of accounts. Just as banking customers in the United States

send USD denominated transactions to settle their financial obligations, so BTC

blockchain users send BTC denominated transactions to each other. The number of

BTC transactions has increased incredibly. According to blockchain.com, a total of

368 million transactions were sent by 1 January 2019. The average daily number of

transactions was 91 in 2009, further rose to 69,084 in 2014 and peaked in 2017 with

283,281 average daily transactions, an increase of 310% between the years 2014 and

2017. BTC has even started playing a key role in the unsteady financial systems of

some developing countries, such as Venezuela or Zimbabwe.

Despite its impressive growth, the public’s attention is on the potential massive

risks of BTC from, e.g. sudden price drops and liquidation risk. In December 2013 and

January 2018, the price dropped by 50% and 63% over two and four weeks respectively.

An extreme case would happen if users stopped interacting on the BTC blockchain,

which would cause every user to suffer the loss of their invested capital. This has

already happened to 1661 cryptocurrencies (CCs), according to deadcoins.com. The

situation in BTC seems better but definitely not optimistic. Several studies have

reported high volatility and tail risk in BTC (Elendner et al., 2017; Feng et al., 2018),

frequent jumps (Scaillet et al., 2018), informed trading (Feng et al., 2017), bubbles,

and sudden drops in market value (Hafner, 2018). Despite the huge market risks, one

observes a demand on the exchanges to enter the market. After buying BTC on a CC

exchange, one either owns them for the purpose of speculative investments or uses

them for transactions with others via the blockchain. While investors’ behaviour can
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be studied via Limit Order Books and the evolution of its price, one knows little about

the users’ behaviour in the BTC blockchain. The anonymity of the BTC blockchain

masks the purposes of BTC transactions and often also their frequency. However the

dynamic evolution of the virtual money flows via blockchain can provide a number

of insightful implications about the users of BTC. Since the BTC blockchain is a

payment network, transactions need to be carried out first to enable new transactions

by other users. Taking into consideration the geographical information paves the way

to study the influence of certain regions and certain types of users on the growth of

the network.

For the borderless BTC, naturally this question has to be addressed at the global

level. Europe and North America have for many years been considered as leaders in

the financial markets. However the recent frantic enthusiasm for crypto mining in

certain areas, in particular China, Japan and Korea (as reported in the media), calls

into question the composition in the BTC blockchain network. The first question of

our study is:

Q1: Where are the active users coming from or which regions are leading

the transactions and how much influence do they have on the BTC blockchain

network?

The active users are defined as those who have an influential impact on the dynamic

evolution of transactions. For exchanges where BTC are traded, Kristoufek (2015)

considered the US and China and found a high correlation between the evolution of

the price in the two markets and a strong positive correlation between the Chinese and

US trading volumes. Darlington III (2014) studied the geographical usage of BTC at

a global level by metrics defined on the BTC related search queries on Google and

the number of mining nodes. For the BTC blockchain, where the virtual currency

is sent from user to user directly, Ron and Shamir (2013) analysed the transaction

behaviours of the accounts from the emergence of Bitcoin until 13 May 2012. While
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studies like Lischke and Fabian (2016) have looked into the geographical distribution

and the official vendor BTC transactions, little is known about the regional effect of

users.

To investigate the regional interactions of the entire global network, we group the

BTC transactions by continent. Inside each of these groups, the data are further

split into 10 groups according to the transaction size, resulting in all in 60 groups.

These serve as a proxy for the wealth of a BTC investor, which is used to classify

the users. It follows the heuristic that only big Bitcoiners are able to execute large

transactions: small Bitcoiners contribute to the small transactions. Detecting the

essential dynamic interactions between the regional and size groups can help to answer

the second question:

Q2: What are the features of the active users in terms of transaction size?

Our analysis of the dynamic network activity finds the presence of serial cross-

correlation. The existence of serial correlations motivates the adoption of Vector

AutoRegressive (VAR) models for analysing the transactions of the BTC network.

Already since Ord (1975), VAR has been used to investigate spatial interactions in

networks. Pesaran et al. (2004) investigates the exposure of economies to each other,

Chudik and Pesaran (2011) study Infinite-dimensional VARs under the assumption

that each node is related to a small number of neighbouring nodes and a large

number of non-neighbouring ones. Dees et al. (2007) study the network between

the European Union and 26 countries. Creal et al. (2013) propose Generalized

AutoRegressive models and study the relation between exchange rates and credit

risk ratings. Zhu et al. (2017) develop the Network vector AutoRegressive (NAR)

model, where the connectivity of the network is represented by an adjacency matrix

that is a given or pre-determined binary matrix, see also Zhou et al. (2017). Both

papers assume that the dynamic network connectivity is controlled by one network

parameter, which, in combination with the given adjacency matrix, circumvents the
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dimensionality problem with large-scale networks. Though simple, modelling with

one single network parameter and, more importantly, a known adjacency matrix,

is a strong and unrealistic constraint for studying the BTC blockchain. While the

geographical origin of a transaction can be identified, the geographical destination of

a transaction is unknown, requiring an estimation of the adjacency matrix of the

network.1 This motivates using a flexible VAR model with unknown adjacency

matrix, which encounters the overfitting problem for high dimensional networks.

The estimation is often inefficient or even infeasible, unless one imposes some lower-

dimensional structural assumptions, e.g. sparsity in the parameter space, see Basu

and Michailidis (2015).

Regularization approaches were originally designed for the univariate case in regressions,

but have recently been brought to a vector time series context including the high-

dimensional VAR models. In an investigation of large Vector AutoRegressive models

with exogenous variables (VARX), Nicholson et al. (2017) propose five kinds of

penalties. Song and Bickel (2011) assume a sparse structure for the lags and apply

group sparsity to the columns of the parameter matrix. These studies build on

the l1/l2-norm penalties proposed by Hoerl and Kennard (1988), Tibshirani (1996)

and Zou and Hastie (2005), also known as ridge regression, the lasso, and näıve

elastic net. Yuan and Lin (2006) develop the group sparsity method for regression

models. The spline-lasso (Guo et al., 2016) allows for smoothly changing coefficients,

which is motivated by the fused lasso (Tibshirani et al., 2005), encouraging locally

constant coefficients within groups. Adopting both the l2-norm and the l1-norm in the

regression context, Simon et al. (2013) develop an algorithm to search for the solution

with group lasso penalization while allowing for individual penalizations inside of the

1The BTC blockchain uses relaying nodes to distribute the transactions to each participant. The
IP address of the relaying node can be observed and provides an approximation of the origin of a
transaction. Since the ownership of the funds is recorded in a public database distributed to each
user and not in the accounts only, the destination of the transaction is not observable. For more
details on the procedure used to observe this information, refer to Section 2.
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groups.

We propose a Sparse-Group Network AutoRegressive (SGNAR) model to study

the dynamics in the BTC blockchain. The entries of the adjacency matrix are

considered unknown and not necessarily binary, introducing a flexibility of the existence

and level of connectivity in the network. By doing this, we essentially assume

that only a few nodes are active. Moreover, diverse magnitudes of the parameters

within the groups, with some being zero, implies the existence of individual sparsity.

The sparsity assumption is necessary due to the huge dimensionality in combination

with the limited data availability. The SGNAR model adopts two kinds of sparsity.

Group sparsity, Yuan and Lin (2006), is applied to the columns (nodes) to identify

the influential groups in certain continents, referred to as active nodes. Individual

sparsity, Tibshirani (1996), is imposed on the individual parameters in an active

node, indicating that the active node does not have an effect on every other group.

The proposed SGNAR estimator with this two-layer sparsity enables discovering 1)

the active regions that dominate the global transactions and 2) the size groups who

lead the dynamic evolution of the network. For the optimization of the SGNAR, we

develop an algorithm for the two-layer sparsity for high-dimensional networks.

This research is related to previous studies, yet there are several differences.

SGNAR provides the adjacency matrix estimator with sparse-group sparsity. Song

and Bickel (2011) use a lasso type sparsity as a pre-selector for un-regularized time

series modelling. In the SGNAR framework, we derive the least square estimator

under two penalties and introduce a two-step algorithm into the SGNAR model to

obtain the estimator numerically. Simon et al. (2013) derive a related algorithm for

univariate regression models, whereas we develop the algorithm for high-dimensional

VAR type models. The interconnections strongly challenge the algorithm compared to

the univariate case, making it computationally intensive. Lastly, the SGNAR model

contributes to the literature on econometric modelling for BTC networks. To the
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best of our knowledge, the BTC blockchain has not been studied from an economic

viewpoint that considers the time dependent impact of regional transaction activity

on the same continent and other regions. Our study provides an analysis of the real

data of the BTC transactions from 25 February 2012 to 17 July 2017. Our results

demonstrate the spatial connections and dynamic changes in the BTC blockchain. In

particular, it is shown that:

- In 2012, connectivity in the network was present before it vanished in 2013–

2015 completely. Yet from 2016 onward, the connectivity improved in the BTC

network.

- Certain user groups from Europe, North America, Asia and South America led

the BTC blockchain network, with a dynamic influence on the rest of the world

in 2012 and 2016, and in most cases very large and very small Bitcoiners of the

continents play a key role.

- Spatial differences are apparent in the global network. While Europe, North

America, South America, Africa and Asia are influential, Oceania is a follower.

In Europe, North America and Asia, only small Bitcoiners play a role, while in

South America and Africa the big ones are important.

- Taking into account that most Bitcoin mining farms are in Asia, it is surprising

to some extent that Asia is not the sole driver but operates Bitcoin for Europe,

North America, Africa and South America, fostering the importance of these

regions in the blockchain.

This paper is organized as follows. Section 2 describes the BTC transaction

data. Section 3 presents the Sparse-Group Network AutoRegression (SGNAR) model;

3.1 gives details on the estimation of the adjacency matrix, then 3.2 presents the

algorithm to optimize the SGNAR. Section 4 applies the SGNAR model to real
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Bitcoin transaction data and presents an interpretation and discussion. Section 5

presents some conclusions. The codes to carry out the numerical calculations are

available on the corresponding author’s GitHub account.

2 Data description

We consider the BTC blockchain from 25 February 2012 to 17 July 2017 (1969 days

with 1843 observed days). The raw data are published on the blockchain at 10-minute

frequency2 with attributes of transaction size, account ID, accounts participating in

the transactions, the timestamp of the transaction, source Blockchain.info. Blockchain.info

provides additional information on the IP address from the relaying party of the origin

of the transaction which is used to label the region. However the IP address is not

available after July 2017, which unfortunately makes a dynamic regional analysis

of the year 2018 and onwards impossible. We group the data into 6 continents:

Africa (AF), Asia (AS), Europe (EU), North America (NA), Oceania (OC) and South

America (SA). The continent is identified depending on the IP address compared

with a dataset of IP address from MaxMind Inc. We follow Reid and Harrigan

(2013) in tracking the approximate location of the origin of the transaction 3. By

assuming that the node that informs first about a transaction is the location where

the transaction takes place, one can approximately identify the location where the

transaction originates. This approach only works as long as the running node does

not use an anonymizing technology.

Each continental group is further categorized according to the transaction size.

Due to anonymity, characterizing BTC users is not easy. We thus group the users

2Note that on the Bitcoin blockchain, the transactions are not published at the moment they
occur. The miners collect the records and publish them as a block at a 10-minute frequency.

3The location of the relaying node gets observed, which is geographically close to the origin of
the transaction. Since the information is saved in the blockchain and each user has a copy of it, no
information on receiving node gets recorded. Consequently the final destination is not traceable.
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according to the size of the transactions associated with the accounts. The heuristic

behind this is that only big Bitcoiners are able to execute large transactions, while

small Bitcoiners contribute to small transactions. One should note that this is a

stringent assumption, yet we deem it valid in the unique transaction network of

BTC. Inside each continental grouping, the data are separated into 10 size groups,

depending on the deciles of the sizes of the transactions. The first group, indicated

by a 1 placed after the abbreviation for the continent, has the smallest transactions,

corresponding to the 0%–10% percentile, while the tenth group, with the largest

transactions, is indicated by a 10, and corresponds to the 91%–100% percentile. Later,

for robustness analysis, we also consider a 3 group per continent setting, where users

are clustered into three size groups corresponding to 0%–30%, 31%–70%, and 71%–

100% percentiles for small, medium, and big investors, respectively.

The identification of the originating continent and building of the groups we

conducted based on the raw data with 10-min frequency. Except for Europe and

North America, there are 1% and 25% zeros, meaning no transactions. A lack of

liquidity can be challenging for the model estimation. We overcome the liquidity

problem by accumulating the raw data to a daily frequency.

For the further analysis, we consider the log transactions. To avoid −∞ in the

data for cases without any transactions in a continental grouping within a day, we

add 1 Satoshi 4 to each transaction. Given the large numbers under consideration,

the bias effect of the correction is negligible.

Figure 1 displays the evolution of the daily log accumulated transaction sizes over

all groups in each continent. Europe and North America on average have the largest

transactions and the dynamic pattern is quite steady. Asia and Oceania contain a

few days (8 and 19) without transactions, even after accumulating to daily frequency.

4The BTC transactions are reported in Satoshi values, the smallest fraction of a BTC, where 1
BTC = 100, 000, 000 Satoshi.
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They are also more volatile than Europe and North America. Africa and South

America are the most volatile and have a relatively larger number of days, 364 and

241, respectively, without transactions. The interpretation of Figure 1 is further

supported by the descriptive statistics, presented in Table 1. Inferring from the mean

and standard deviation, Europe and North America, Asia and Oceania, Africa and

South America indeed show a related behaviour. Also the minimum values indicate

the existence of zero transactions, a lack of liquidity, in some areas, supporting the

previous analysis.

Table 2 provides the average daily transaction volumes in USD in each decile of

each continent. For the conversion to USD we consider the daily closing price of BTC

reported on YahooFinance. One sees that the daily transaction volumes can be very

low, especially in Africa and South America, see the lowest decile. At the same time,

the transactions in the top decile of Europe have a mean transaction volume of over

144 million USD per day. In Africa and South America for the same decile, it still

ranges to over 200,000 and 425,000 USD on daily average. Apparently there are quite

high transaction volumes, especially when considering that BTC is still an emerging

asset.

For deeper insights into the features of the data of the groups in each continent,

the empirical distribution of the log of the sizes of the transactions is displayed as

a boxplot in Figure 2. For each continent, the left plot corresponds to the first

group, namely group 1 with the smallest transactions, and the right one to group 10

with the largest transactions, leading to an increasing pattern within each continent.

The narrow box width of Europe and North America suggests a smooth evolution

of the transaction sizes with few spikes. There are hardly any occurrences of zero

transactions, indicating a healthy liquidity in these regions. This indicates a more

mature market in Europe and North America, hence a clearer structure within an

estimated model is to be expected. Asia and Oceania are relatively more dispersely
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distributed. The daily transaction sizes are more volatile, inferred from the size of the

center box and the length of the whiskers. South America becomes again extreme in

the sense of showing longer whiskers, translating to a larger variation of the sizes of the

transactions within each group. Even in group 10 with the highest transaction sizes,

there are days without any transactions. Africa follows a very different pattern from

the other continents. The respective boxplots indicate high volatilities with frequent

drops to zero transaction volume. The divergences between the groups eventually

suggests, for the modelling, an adjacency matrix with a flexible choice of parameters.

Figure 1: Time series of daily log accumulated transactions. The time period is 25
February 2012 until 17 July 2017 in the 6 continents Africa, Asia, Europe, North
America, Oceania, South America.

There remains the question if there is any dynamic dependence between the BTC

transactions. As an illustration, Figure 3 displays an autocorrelation effect within

the highest and lowest groups on each continent. The two extreme groups in each
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Figure 2: Daily log transactions of the 10 groups displayed as boxplots, where the
left boxplot represents group 1 and the right one group 10 of the respective continent.
The time period is 25 February 2012 until 17 July 2017 in the 6 continents Africa,
Asia, Europe, North America, Oceania, South America. The first 8 boxplots for
Africa range to 0 due to the little number of transactions in this continent in several
days.
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continent exhibit serial autocorrelation and persistence, with a slow decay of the

autocorrelations. Not surprisingly, the effect is the strongest in Europe and North

America. In each of these two continents, the lowest group exhibits a stronger

effect than the largest. Oceania and Asia, on the other hand, have weaker serial

dependences. The effect in the highest group 10, is stronger than in their corresponding

lowest group 1. The remaining continents, Africa and South America, share similar

serial dependence. Moreover, there are network effects within the BTC blockchain, as

reflected by the lag 1 cross-correlations between the groups and the regions, see Figure

4. The diagonal block of the heat map shows the lead–lag dependence among the

groups within the same continent, while the off-diagonal shows the intra-continental

cross-dependence. Europe and North America exhibit a stronger cross dependence,

both inter-continent and intra-continent, in terms of their influence on the others

(lead) and being affected by the others (lag). The network effect is much less
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Figure 3: Autocorrelation Functions of the total value of each day’s transactions in
the 6 continents Africa, Asia, Europe, North America, Oceania, South America.
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between the other continents. South America and Africa exhibit a connection within

themselves and simultaneously sparse cross-dependence with the other continents.

This indicates that these continents are self-dependent.

The magnitude of the cross dependence differs, suggesting flexibility in the dynamic

modeling parameters. In the heat map, there are a number of zeros, displayed as blank

fields, and values close to zero, which implies sparsity in the dynamic structure. All

the intra-continental dependences are positive and with similar values, although in

Asia the parameter values are a bit lower than in the other continents. This motivates

considering one common parameter to represent the autocorrelation.

Table 1: Descriptive statistics of the log accumulated transactions of the 6 regions
Africa (AF), Asia (AS), Europe (EU), North America (NA), Oceania (OC), South
America (SA).

AF AS EU NA OC SA
mean 18.65 26.01 30.43 30.41 24.76 20.48

sd 9.47 2.19 0.95 0.85 3.08 8.15
skewness -1.34 -7.17 -1.03 -0.74 -5.34 -1.96
kurtosis 3.06 85.75 11.73 15.79 43.06 5.24

min 0.00 0.00 22.04 21.78 0.00 0.00
max 28.91 31.65 35.38 34.40 31.21 31.85
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Figure 4: Lag 1 cross-correlations between the size of the transactions – ordered in
10 groups – in the 6 regions: Africa (AF), Asia (AS), Europe (EU), North America
(NA), Oceania (OC), and South America (SA). Each block on the diagonal represents
the lag 1 dependence within a continent, while the off-diagonal blocks represent the
inter-continental effects.
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3 Sparse-Group Network AutoRegression

We propose a Sparse-Group Network AutoRegression (SGNAR) model to describe

the dynamic dependence in a network with an unknown and sparse adjacency matrix.

The adjacency matrix reflects both the connectivity with non-zero values and their

strengths, shown as the magnitudes among the nodes. The serial dependence on

its own lagged value is controlled by a common parameter. To detect the essential

dynamic dependence, a two-layer sparsity is imposed on both group and individual

effects. We develop a regularized least squares estimator and a gradient descent

algorithm for modelling the high dimensional network.
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Table 2: Mean daily transaction value (in USD) in the deciles of the transactions of
the 6 regions Africa (AF), Asia (AS), Europe (EU), North America (NA), Oceania
(OC), South America (SA).

AF AS EU NA OC SA
.1 7.18 52.52 920.34 333.46 11.71 4.06
.2 34.53 205.43 5931.73 2470.26 56.53 19.53
.3 89.94 448.50 18743.82 7341.04 147.04 57.45
.4 197.07 1039.13 39903.12 15438.44 342.60 131.56
.5 431.86 2074.87 83607.85 34735.14 771.13 302.91
.6 947.88 4386.15 177291.31 80343.77 1683.52 713.64
.7 2179.41 17316.84 390226.22 193029.66 3853.24 1970.66
.8 5834.54 66690.19 1011731.37 531628.26 10173.54 4955.48
.9 20647.78 235919.06 3677787.40 2040912.93 40651.43 17731.31

.10 425972.68 2789979.66 144060061.43 71684792.44 573119.69 211864.35

Let N denote the size of the network and Yi,t denote the transaction size of Node

i, 1 ≤ i ≤ N at time t, 1 ≤ t ≤ T , where T is the length of the time period. The

SGNAR model is defined as follows

Yi,t = β0 + β1Yi,(t−1) +
N∑
j=1

aijYj,(t−1) + Z>i γ + εi,t (1)

where the parameter β1 controls the autoregressive dependence. The adjacency

matrix A = (aij)1≤i, j≤N represents the connectivity. The elements of A reflect both

the connectivity between Node i and the lagged value of Node j, if nonzero, but also

the strength of the dynamic influence of Node j’s lag on Node i. The adjacency

matrix is assumed to be sparse, with few non-zero entries, highlighting active groups

and nodes. If aij 6= 0, Node j is active and has influence on Node i. For aij = 0,

Node j has no influence on Node i. If aij = 0 for all i, then Node j is inactive. It

is unknown which elements are zeros and which are not. Since the autoregressive

dependence is parametrized by β1, the diagonal elements of A are forced to be zeros

(i.e. aii = 0, 1 ≤ i ≤ N). SGNAR also allows the measurement of the impact of

exogenous variables, if applicable. Suppose there is a q-dimensional random vector

Zi = (Zi1, · · · , Ziq)> ∈ IRq observed for node i. The SGNAR model allows the
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estimation of γ = (γ1, · · · , γp)>. In addition, εi,t is white noise s.t. E(εi,t) = 0,

E(εi,sεi,τ ) = 0, Var(εi,t) = σ2
i , 1 ≤ i ≤ N and 1 ≤ t, s, τ ≤ T .

Define Yt = (Y1t, · · · , YNt)> ∈ IRN , Z = (Z1, · · · ,ZN)> ∈ RN×q εt = (ε1t, · · · , εNt)>

and write IN for the N dimensional identity matrix. The SGNAR model (1) can be

represented in compact matrix form:

Yt = 1β0 + (INβ1 + A)Yt−1 + Z>γ + εt. (2)

Our interest is to detect 1) the active groups and 2) the active elements within the

active groups, namely to estimate the adjacency matrix A under sparsity. The large

size of the network challenges the estimation of the N ×N adjacency matrix, due to

the limited data availability with T as the number of observations. This translates

to the famous small-T -large-N issue with T << N2.

Under the two-layer sparsity assumption, also referred to as sparse-group, the

estimation is achieved by carrying out a nonlinear regularized optimization:

min
θ

1

2N

T∑
t=2

||Yt − 1β0 − (INβ1 + A)Yt−1 − Z>γ||2F (3)

+
N∑
i=1

(1− α)λ||A·i||F+
N∑
i=1

N∑
j 6=i

αλ|aij|

where θ = (β0, β1, A, γ)>. Group sparsity is applied to the columns of the adjacency

matrix. The matrix A is partitioned to A·i with all the elements being 0 except for the

ith column, i.e. A·i = {A|akj = 0 ∀ k ∧ (j 6= i)}, and A·−i = {A|akj = 0 ∀ k ∧ (j = i)}

with the ith column being 0. Individual sparsity is further applied only to the nonzero

columns, namely, the active groups. If a group is inactive, the entire corresponding

columns of the adjacency matrix will be shrunk to zero. Here α and λ are the tuning

parameters and ||A||F=
√∑

i,j a
2
ij refers to the Frobenius norm. The term (1− α)λ
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controls the group sparsity and αλ the individual sparsity.

3.1 Gradient Descent

To solve the optimization problem, we develop a gradient descent algorithm and

iteratively apply it to each column of A. In every iteration, the parameters of a

particular group are optimized, while the remaining parameters are fixed.

Specifically, let A·i be the ith column/group to be optimized in an iteration step.

The remaining parameters in A·−i are held fixed when optimizing the ith column. We

construct the partial residuals of Yt, which contain the dependence unexplained by

the already optimized parameters:

rt,−β0 = Yt − (INβ1 + A)Yt−1 − Z>γ,

rt,−β1 = Yt − 1β0 − AYt−1 − Z>γ,

rt,−A·i = Yt − 1β0 − (INβ1 + A·−i)Yt−1 − Z>γ,

rt,−γ = Yt − 1β0 − (INβ1 + A)Yt−1.

The following are the loss functions:

L(r−β0 ; β0) =
1

2N

T∑
t=2

||rt,−β0 − 1β0||2F .

L(r−β1 ; β1) =
1

2N

T∑
t=2

||rt,−β1 − INβ1Yt−1||2F ,

L(r−A·i ;A·i) =
1

2N

T∑
t=2

||rt,−A·i − A·iYt−1||2F ,

L(r−γ; γ) =
1

2N

T∑
t=2

||rt,−γ − Z>γ||2F .

To simplify the notation, let θ1 = β0, θ2 = β1, θ3 = γ and θk = A·i, k =
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4, · · · , N + 3. We rewrite the optimization in this particular iterative step as

θ̂k = argmin
θk

L(r−θk ; θk) + (1− α)λ||θk||F+
N∑
i=1

αλ|θk,i| (4)

where for k = {1, 2, 3} the penalty term is set to λ = 0, namely no sparsity penalization

is applied for β0, β1 and γ.

There is no closed form solution for the non-convex optimization problem in (3).

We introduce a two-step gradient descent algorithm to numerically estimate β0, β1, γ

and A in the SGNAR framework. We derive the updating function for each iteration

step l. Using a Taylor expansion, we formulate an upper bound for L(r−θ(l)k
; θ

(l)
k )

depending on the θ
(l−1)
k that has been optimized in the previous iteration step l − 1.

The minimization problem can be equivalently solved by minimizing

M(θ
(l)
k ) =L(r−θ(l−1)

k
; θ

(l−1)
k ) + (θ

(l)
k − θ

(l−1)
k )>∇L(r−θ(l−1)

k
; θ

(l−1)
k ) +

1

2ξ
||θ(l)k − θ

(l−1)
k ||2F

(5)

+ (1− α)λ||θ(l)k ||F+
N∑
i=1

αλ|θ(l)k,i|,

where ξ is small enough so that the quadratic term dominates the Hessian of the loss

function. This approach is also known as the majorize-minimization approach, Wu

and Lange (2008). Note in the case of k = {1, 2, 3}, λ is set to 0.

The first term of Equation (5) does not depend on θ
(l)
k , thus it can be further

simplified to

M(θ
(l)
k ) ∝ 1

2ξ
||θ(l)k − {θ

(l−1)
k − ξ∇L(r−θ(l−1)

k
; θ

(l−1)
k )}||2F (6)

+ (1− α)λ||θ(l)k ||F+
N∑
i=1

αλ|θ(l)k,i|.
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The loss function is embedded into the thresholding function of the Lasso as

follows:

S(z, αλ) = sign(z) ◦ (|z|−αλ)+,

where ◦ denotes the Hadamard product. This leads to θ̂k = 0 if

||S
{
θ
(l−1)
k − ξ∇L(r−θ(l−1)

k
; θ

(l−1)
k ), ξαλ

}
||F≤ ξ(1− α)λ

and otherwise

{
1 + ξ(1− α)λ/||θ(l)k ||F

}
θ
(l)
k = S

{
θ
(l−1)
k − ξ∇L(r−θ(l−1)

k
; θ

(l−1)
k ), ξαλ

}

The solution to (6) satisfies

θ
(l)
k =

1− ξ(1− α)λ

||S(θ
(l−1)
k − ξ∇L(r−θ(l−1)

k
; θ

(l−1)
k ), ξαλ)||F


+

S(θ
(l−1)
k − ξ∇L(r−θ(l−1)

k
; θ

(l−1)
k ), ξαλ).

(7)

3.2 Algorithm

The two-layer sparsity has both group and individual terms which are inseparably

connected. Friedman et al. (2010) outline an idea for an algorithm that would be

applicable in such situations. Yet the idea was designed for the univariate case and

the groups are defined on the rows. In our multivariate case, we define the group on

the columns, as we are looking for leading groups which influence the future values

of other groups. This makes the groups dependent on each other.

Simon et al. (2013) formulated the algorithm for univariate regression models,

which translates to a regression on a vector of length (T − 1). Sparsity of the rows

instead of the columns would result in an optimization problem which requires less
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computation time to find a solution since each group can be optimized independently

from the others. However this does not allow a network interpretation. Because of

the interdependency of the groups, the optimization problem cannot be written in a

vectorized form. The complexity of the model challenges the algorithm, resulting in

a longer runtime. We propose a new algorithm customized for the multivariate case

with groups defined on the columns. The algorithm initializes with all parameters set

to be 0. It iterates through each group of parameters by starting with the parameters

β0, β1, γ to control for the effects of the intercept, autoregressive dependence, and

external influences, before optimizing on the groups in the adjacency matrix A. The

algorithm optimizes at the update step width ξ, before the current group θk gets

updated. The update of θk is performed until an a priori chosen vectorized threshold

value ε2 is reached. When θk has been updated, the next group gets optimized until

a full walk through all the groups of parameters has been performed. This procedure

repeats until it converges. In detail, the algorithm works as described in Algorithm

1.

The parameter ε1 can be set to any value in (0, 1). Its value controls the density

of the grid in which the search for the updating value of parameters takes place. The

smaller it is, the faster the algorithm, so one can use it to speed up the computationally

intensive method. The entire algorithm works under a chosen mixing parameter α

and a penalty parameter λ. The algorithm converges when a vectorized threshold

parameter ε3 is satisfied.

The algorithm depends on the hyperparameter λ. It controls the level of penalization,

which balances the sparseness of the model against the fit. We derive first which level

of λ sets all groups to 0 by following the approach of Simon et al. (2013). The path

is started with λmax and from there on a halving sequence is created. In the spirit of

Simon et al. (2013), the mixing parameter α is set to be α = 1/N , which gives equal

importance to group and individual sparsity.
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Algorithm 1 SGNAR optimization algorithm

Input: Data Yt for all t = 1, . . . , N
Output: Adjacency matrix A

1: Initialization β0 = 0, β1 = 0, γ = 0, A = 0, m = 1
2: Set θ1 = β0, θ2 = β1, θ3 = γ, θk = A.i, i = 1, . . . , N, k = i+ 3
3: while vec{A(m) − A(m−1)} < ε3, β

(m)
0 − β

(m−1)
0 < ε3, β

(m)
1 − β

(m−1)
1 < ε3 or

γ(m) − γ(m−1) < ε3 do
4: for k = 1, . . . , N + 3 do
5: l = 2
6: while θ

(l)
k − θ

(l−1)
k < ε2 do

7: ξ = 1
8: while ξ small enough such that it holds L(r−U ;U) ≤ L(r−θ(l−1)

k
; θ

(l−1)
k ) +

(U − θ(l−1)k )>∇L(r−θ(l−1)
k

; θ
(l−1)
k ) + 1

2ξ
||U − θ(l−1)k ||2 do

9: z = θ
(l−1)
k − ξ ∗ ∇L(r−θ(l−1)

k
; θ

(l−1)
k )

10: S = sign(z) ◦ (|z|−αλ)+
11: U = {1− ξ(1− α)λ/||S||}+S
12: ξ = ε1 ∗ ξ
13: end while
14: θ

(l)
k = Ul−1 + (l−1)

(l+2)
(Ul − Ul−1)

15: l = l + 1
16: end while
17: end for
18: m = m+ 1
19: end while
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The settings for running Algorithm 1 are as described in Algorithm 2.

Algorithm 2 SGNAR algorithmic procedure

1: Run Algorithm 1 for each λ with J iterations
2: Fix identified groups from step 1.
3: To obtain warm starting values, run Algorithm 1 without penalization for

identified groups
4: Utilize results from 3. as starting values
5: Run Algorithm 1 with λ sequence

4 Real Data: Bitcoin Transaction Analysis

In this section, we analyse the BTC blockchain and implement the SGNAR model to

detect the regional and size effects in the global virtual currency transactions in the

BTC blockchain network.

4.1 Estimation procedure

We use the BTC transaction data described in Section 2 from February 2012 to July

2017. To provide a better interpretation, the data is demeaned and scaled with the

GARCH volatility. As such the magnitudes of the parameters become comparable.

The intercept β0 is not required in the estimation. Since we concentrate our analysis

on the transaction streams in the BTC blockchain, we omit γ too. We are modelling

the transactions on a daily basis as follows:

Yi,t = β1Yi,(t−1) +
N∑
j=1

aijYj,(t−1) + εi,t (8)

where the parameters are defined as in (1). We focus on the estimation of the unknown

adjacency matrix A = {aij} for network connectivity and the parameter β1 of serial

dependence. To understand the time related dependence in the network, we split the
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activity into years and perform the estimation independently for each year. In total,

there are 6 samples; each contains the daily transactions of the 60 groups within the

particular year.

The estimation relies on the choice of α and λ as defined in the regularized

optimization (3). The mixing parameter α is set to be 1/N , where N is the number

of groups: in this case N = 60. The choice of λ on the other hand is data-driven.

Although cross-validation is a standard technique, it ignores the serial dependence in

time series, see Nicholson et al. (2017). Hence, we use a forward-looking criterion by

selecting λ such that the out-of-sample forecast errors, measured by the root mean

squared error (RMSE), are minimized on the next year’s data. This approach was also

used in Bańbura et al. (2010), Song and Bickel (2011) and Nicholson et al. (2017). As

an example, for the period of 2015, the SGNAR estimation is conducted on the sample

period from 1 January 2015 to 31 December 2015. The hyperparameter λ is selected

such that the forecasts for the next 196 days from 1 January 2016, computed with the

adjacency matrix and β1 estimated in 2015, has the minimal out-of-sample RMSE

among all the alternatives. We chose 196 days to have comparable results given that

the 2017 data are only available until mid-July. By means of this procedure we use

the maximum available amount of data over all years, which ensures comparability

between years and a maximum of used information. Since SGNAR is a method

dependent on the evaluation period, a consistent choice over all periods is crucial for

a meaningful comparison. Note that the observation for 17 July was omitted, since

it changes the result in an unreasonable manner and thus is considered as an outlier.

To select λ, we carried out this estimation exercise for each period from 2012 to 2016

until we reached the end of the sample, i.e. 2017.
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4.2 Evaluation

We evaluate the estimation performance using metrics including the in-sample R2

for the year estimated, out-of-sample R2 for the next year’s observations, in-sample

RMSE and out-of-sample RMSE. The first two metrics measure the predictability,

and the last two measure the variation around the realized value.

We illustrate the serial cross-dependence with chord diagrams. They demonstrate

the essential dynamic connectivity in the global BTC blockchain network. A chord

diagram displays the direction and magnitude of the influence of each node by showing

the magnitude by means of the circle and the destination of the signal by the chord.

The wider the space on the circle, the larger the magnitude and hence the higher

the dynamic impact in the network. A chord diagram does not differentiate between

positive and negative influences. The sum of the absolute values of the parameters

(magnitude) is displayed on the circle. Moreover, the colour of the chord corresponds

to the colour of the continent to which the effect is directed. For an example, consider

Figure 5e, where EU.1 is outstanding with a magnitude of 12.5 and about one-third

of the magnitude directly influencing the other European groups. The remaining

magnitude mostly reflects an influence on North American, South American, Oceanian

and Asian groups.

4.3 Results and interpretation: 10-groups

SGNAR is applied to the grouped transactions (10 groups per continent) and we

tackle the problem of answering if user groups defined by transactions are related in

a time dependent manner between years. In the year-to-year analysis, zero entries in

the adjacency matrix indicate that the past transactions of the corresponding group

have no influence on the future transactions of another group. If there are only zero
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entries in one column, this indicates the lack of network connectivity of the particular

regional size group with all the other groups. On the other hand, a group with a

non-zero entry in the adjacency matrix is considered as an active group as it is able

to influence the dynamic evolution of the virtual money flows.

We focus on the years where the adjacency matrices are not zero, in other words,

where network effects appeared. Figure 5 illustrates the active network connectivity

based on the 10 groups per continent over the whole sample period. It shows there are

network effects for 2012 and 2016. 2012 was the year when BTC received increasing

attention. Its price doubled before it skyrocketed in 2013 with its price reaching over

1000 USD for the first time in November 2013. Simultaneously with a decreasing

price evolution and a period of the creation of a plethora of alternative CCs, the BTC

Blockchain showed no network effects. In 2016, akin to 2012, the price doubled on the

exchanges before it skyrocketed at the end of 2017. In particular, we observe network

effects for 2012 and 196 days of the evaluation period coming from a small group

in North America, NA.1, the smallest group from Asia, AS.1, as too the top group

in South America, a medium and top group in Africa. In terms of the magnitude5

of the groups, SA.10 has about the same magnitude as the North American and

medium African groups combined, hence stronger network effects come from users who

move larger transactions from South America. One should note that the transaction

amounts in SA.10 are about the size of a medium group in North America. This

picture changes strongly in 2013. From 2013 to 2015 not a single group is active,

hence we observe a decreasing network connectivity. In contrast, in 2016 effects again

become visible. The smallest groups from Europe and Africa become active. For

Africa one observes that the network effects are frequently directed towards South

America and Africa itself. The frequent drops to 0 transactions in 2017 of these two

continents are an explanation for the active state of AF.1, compare Figure 1. The

5Recall that the data are standardized, hence the magnitudes of the parameters are comparable
in their values.
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network effects of AF.1 reflect this dynamics within South America and Africa. The

group EU.1 has a substantially larger magnitude and sends network effects to all

continents, particularly strong ones to other European groups and South America,

followed by Oceania and Asia. Over the years, one observes strong changes in the

network. After all, Bitcoin is an emerging asset and its usage has been changing over

time. One can only speculate about the actual usage, yet major known activities

include gambling and trading.

The transactions before 2016 showed decreasing network effects from daily data on

the next days observations, but this picture seems to change in 2016. The groups and

continents involved seem surprising to some extent, because media reports often focus

on the roles of CCs in Asia rather than in Europe, especially in terms of mining. But

comparing the time series plots, Figure 2, it is obvious the volumes of transactions

in Europe and North America are higher than in other regions. This gives a good

rationale for the effects coming from these two regions, even from smaller groups

like EU.1. Further support for this finding comes from the surprising number of

null values in Africa, South America and Oceania. Explanations for these values

may be that users from these regions switched to other CCs, since in this period a

bunch of altcoins (CCs other than BTC) became important. Secondly, the number of

transactions in the BTC blockchain increased strongly (150%) in this time, see Figure

6, and simultaneously the maximum block size of 1 Megabyte was reached. Since each

block of transactions has a limit on the possible number of included transactions, it is

likely that certain users from Europe completely dominated the transaction chain in

this period. Via the willingness to pay transaction fees, the miners’ decisions about

privileging one transaction over another by including it into the next block can be

influenced. The miners have an incentive to include small transactions which pay

high transaction fees, since by this action they can maximize their personal profit.

Hence the respective transactions would be prioritized, which leads to the conclusion
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that high value transactions originated from the continents detected in the analysis.

This provides good evidence for the economic reasons described for our finding. The

limit on the possible number of transactions included in each block led the developers

to introduce a BTC without this restriction, called Bitcoin Cash (BCH) on 1 August

2017. This event was a fork of the BTC source code in which the code was amended so

that it would fit the features wished for. As a result, BTC and BCH exist as individual

CCs. Finally, it can be inferred that the blockchain transactions developed a more

dense network pattern in the last two years, with network effects from Europe and

Africa, which was fostered by market reasoning.

Table 3: R2, RMSE and λ penalties for in- and out-of-sample performance of the
models found in the respective years for 10 groups per continent with 196 days
evaluation period length.

R2 in R2 out RMSE in RMSE out α ∗ λ (1− α) ∗ λ
2012 0.17 0.20 0.87 0.99 0.01 0.54
2013 0.24 0.24 0.93 0.92 0.04 2.45
2014 0.27 0.35 0.90 0.85 0.02 1.41
2015 0.28 0.26 0.92 0.88 0.04 2.12
2016 0.21 0.27 0.85 0.70 0.01 0.73

Having a closer look at the actual values assigned to the diagonal of the adjacency

matrix, we observe they are quite low or of medium strength. In the first 4 years,

the autoregressive part takes on the estimates 0.27, 0.37, 0.46 and 0.44. Apparently

the autoregressive effect is not strong in these years. In 2016 the autoregressive

parameter is again quite low, taking the value 0.36. It is a strong sign that the effects

got assigned to the columns instead of the diagonal. In case the network effects

could be represented by the autoregressive dependence (diagonal), the effects would

be assigned accordingly, which is a feature of SGNAR. Yet since this is not the case,

it is a strong hint the network effects are of sufficient importance to be considered in

the SGNAR network. Considering the R2 and RMSE for the in- and out-of-sample

analysis, presented in Table 3, one observes a high overall out-of-sample prediction
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Figure 5: Adjacency matrices and serial dependence parameter in analysis with 10
groups and evaluation period length of 196 days.

(a) Adjacency matrices for
the 10 groups in 2012

(b) Adjacency matrices for
the 10 groups in 2013

(c) Adjacency matrices for
the 10 groups in 2014

(d) Adjacency matrices for
the 10 groups in 2015

(e) Adjacency matrices for
the 10 groups in 2016

(f) Autoregressive
dependence parameters
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Figure 6: Daily Bitcoin Transactions (line) and the Block Size of Bitcoin (filled area)
in the time period 4 January 2009 to 17 July 2017.
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accuracy since all R2 are above 20%. 2016 is a notable year since it is when the

model shows strong network effects after no effects in 2013–2015. The RMSE shrinks

a lot compared to earlier years’ models. It is notable that the out-of-sample RMSE is

much lower than the in-sample one for 2016, hinting that the year-to-year structure

becomes more related. Considering the regularization parameters in 2013–2015, the

high λ penalties indicate the network effects were spurious, hence not containing

information, and therefore shrunk to 0. The much lower valued of λ in 2012 and

2016 show the importance of the identified network effects and that hardly any other

effects exist since little penalization is necessary.

4.4 Robustness check with alternative grouping: 3-groups

In order to understand whether the regional and size effects are robust to the grouping,

we carried out robustness checks with alternative three groups. For the three groups,

users in each continent are further split into small, medium, and big groups, according

to the sizes of their transactions. The other model settings remain the same as

previous. The resulting adjacency matrices for the three groups per continent are

illustrated in Figure 7, which again were obtained by minimizing the out-of-sample

RMSE on 196 days forecast.

Concerning the analysis with three groups per continent, the Bitcoin Blockchain

showed network effects from big users in South America and small users in Europe

and Africa, SA.3, EU.1 and AF.1. Autoregressive dependence effects are illustrated in

Figures 7f and indicate a medium sized connectivity within the groups. Interestingly,

the autoregressive dependence parameter shrinks markedly in 2016, when strong

network effects on 2017 become apparent. No network effects were uncovered for

2013–2015. Therefore the observation of no network activity is robust to the 10-

grouping. Again in 2016, strong network effects were uncovered, in terms of connectivity
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as well as in terms of their magnitude. The previous result from the 10-grouping is

therefore robust.

The network effects in 2016 originate from EU.1 and AF.1, which is consistent with

the 10-group case. Also South America is now active and its influence is frequently

directed towards itself and Europe. In contrast, Europe mostly influences other

continents, rather than itself. Table 4 gives the in- and out-of-sample R2 as well

as the RMSE. The out-of-sample R2 is in all the years above 20%, indicating a high

prediction accuracy. The RMSE stays more or less in the same range, just in 2016 it

was much lower out-of-sample. Interestingly, the out-of-sample RMSE stayed lower

than for 2012, when several network effects were detected, hinting at a more difficult

data structure to be modelled in 2012 compared to 2016.

Figure 7: Adjacency matrices and serial dependence parameter in analysis with three
groups and evaluation period length of 196 days.

(a) Adjacency matrices for
the three groups in 2012

(b) Adjacency matrices for
the three groups in 2013

(c) Adjacency matrices for
the three groups in 2014

(d) Adjacency matrices for
the three groups in 2015

(e) Adjacency matrices for
the three groups in 2016

(f) Autoregressive
dependence parameters
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Table 4: R2, RMSE and λ penalties for in- and out-of-sample performance of the
models found in the respective years for 3 groups per continent with 196 days
evaluation period length.

R2 in R2 out RMSE in RMSE out α ∗ λ (1− α) ∗ λ
2012 0.18 0.23 0.88 0.99 0.03 0.51
2013 0.25 0.25 0.91 0.91 0.07 1.24
2014 0.27 0.37 0.90 0.81 0.04 0.67
2015 0.27 0.25 0.92 0.91 0.06 1.02
2016 0.24 0.30 0.88 0.72 0.02 0.33

5 Conclusion

Cryptocurrencies have become interesting asset classes. BTC, being the elephant

in the room, is traded all over the globe and virtually uncorrelated to any other

asset class, which in principle is good for purposes of diversification. Besides the

trading data on the exchanges, the blockchain displays a second layer of transactions,

which are the actual shifts of funds directly between users without a middleman.

The anonymity of the blockchain challenges analysis, even though understanding the

state of the network is important to understand a cryptocurrency. For the analysis

of the blockchain, the huge dimensionality of the blockchain is challenging. We have

proposed a Sparse-Group Network AutoRegressive (SGNAR) model to analyse the

time dependent network relations between the users of the BTC blockchain. We have

provided an algorithm to derive the adjacency matrix of SGNAR and find spatial

connections in the BTC blockchain. We found the global connectivity remained low

in the period from 2013 to 2015, although it was high in 2012 and enhanced in the

recent years of 2016 and 2017, driven by specific user groups from all over the globe.

Taking into account that most Bitcoin mining farms are in Asia, it is surprising to

some extent that Asia is not the sole driver but operates Bitcoin for Europe, North

America, Africa and South America, fostering the importance of these regions in the

blockchain. In particular we found that mostly the users with the smallest and largest
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sizes of transactions from North America, Europe, South America, Africa and Asia

were driving the Bitcoin transactions, while the other groups and all the groups in

Oceania were either followers or isolated.
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