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The problems of non-concave utility maximization appear in many areas of finance and economics, such as

in behavior economics, incentive schemes, aspiration utility, and goal-reaching problems. Existing literature

solves these problems using the concavification principle. We provide a framework for solving non-concave

utility maximization problems, where the concavification principle may not hold and the utility functions

can be discontinuous. In particular, we find that adding bounded portfolio constraints, which makes the

concavification principle invalid, can significantly affect economic insights in the existing literature. Theoret-

ically, we give a new definition of viscosity solution and show that a monotone, stable, and consistent finite

difference scheme converges to the solution of the utility maximization problem.
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1. Introduction

Although in traditional utility maximization problems the objective functions are concave, there

is also a large literature on non-concave utility maximization in economics and finance. Examples

include the S-shaped utility function in behavior economics (e.g., Kahneman and Tversky (1979),

Berkelaar, Kouwenberg and Post (2004), and Jin and Zhou (2008)), the goal-reaching problem

(e.g. Browne (1999a, 2000) and Spivak and Cvitanić (1999)), delegated portfolio choices with

non-concave compensation schemes (e.g. Carpenter (2000), Basak, Pavlova and Shapiro (2007),

and He and Kou (2018)), and the aspiration utility maximization (e.g. Diecidue and van de Ven

(2008) and Lee, Zapatero and Giga (2018)). Almost all models in the above literature rely on the

concavification principle, namely, replacing a non-concave utility by its concave envelope, and thus

reducing the non-concave utility maximization problem to a concave one.
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In this paper we attempt to provide a general framework for solving non-concave utility max-

imization problems where the concavification principle may not hold. In particular, we find that

adding bounded portfolio constraints, which makes the concavification principle invalid, can sig-

nificantly affect economic insights in the existing literature. To achieve this, theoretically, we show

that a monotone, stable, and consistent finite difference scheme converges to the solution of the

utility maximization problem, via a new definition of viscosity solution.

1.1. Motivation

We begin our discussion by looking at Figure 1, which plots the portfolio weights from 6 models in

the literature of nonconcave utility maximization. One can immediately see high leverage ratios,

from 300% to 4000%, even infinite. This naturally leads us to consider borrowing constraints.
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(f): Aspiration Utility

Figure 1 The time 0 unconstrained optimal fraction of total wealth invested in the stock against wealth level.

It can be seen that the optimal fraction is likely very high or even infinite. The six sub-figures (a)-(f) correspond

to the models of Browne (1999a), Berkelaar, Kouwenberg and Post (2004), Carpenter (2000), Basak, Pavlova

and Shapiro (2007), He and Kou (2018), and Lee, Zapatero and Giga (2018), respectively. A compulsory

liquidation at w= 0.5 is imposed for the models of Basak, Pavlova and Shapiro (2007) and He and Kou (2018).

However, surprisingly, when the borrowing constraints are imposed, the optimal strategies (as

we will prove later) all involve short-selling to the highest extents. More precisely, in Figure 2 we

study the same models as in Figure 1 using the same parameters, except that the constraint of

[−500%,300%] ( i.e. 300% borrowing constraint and 500% short-selling constraint) is imposed; the
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figure shows that the optimal strategies may borrow or short-sell as much as permitted, as the

portfolio weights in all 6 sub-figures reach both limits of -500% and 300%. Indeed, if one relaxes

the constraint to be [−1000%,300%], the optimal strategies for all 6 sub-figures reach both limits

of -1000% and 300%. This should be contrasted with the optimal strategies without borrowing

constraints, which do not involve short-selling at all.
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(b): S-Shaped Utility
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(c):Option Compensation
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(d): Convex Flow-Performance Relationship
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(e): Traditional Compensation Scheme
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(f): Aspiration Utility

Figure 2 The time 0 optimal fraction of total wealth invested in the stock against wealth level under a less

restricted portfolio constraint (300% borrowing and 500% short-selling constraints, i.e. d=−5 and u= 3). It can

be seen that the optimal strategies may use as much leverage or short-sale as permitted. The six sub-figures

(a)-(f) correspond to the models of Browne (1999a), Berkelaar, Kouwenberg and Post (2004), Carpenter (2000),

Basak, Pavlova and Shapiro (2007), He and Kou (2018), and Lee, Zapatero and Giga (2018), respectively. A

compulsory liquidation at w= 0.5 is imposed for the models of Basak, Pavlova and Shapiro (2007) and He and

Kou (2018).

This motivates us to study two-side constraints and also to treat things carefully, as intuition

can easily go wrong in the case of nonconcave utilities. Technically, the presence of the constraints

makes the concavification principle invalid, because the value functions are not globally concave

before maturity; see, e.g., Figures 3 and 6.

1.2. Our Contribution

The contribution of this paper is twofold.

• We find that adding bounded portfolio constraints, which makes the concavification principle

invalid, can significantly affect economic and financial insights in the existing literature. See Table

1.
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Table 1 Economic and Financial Insights

Effects of Portfolio Constraints : General Findings

1. In general the concavification principle no longer holds, because the value function is not globally

concave before maturity; see Figures 3 and 6.

2. Investors may not be myopic with respective to portfolio constraints in the sense that they may
act before portfolio constraints being binding; see the upper panel of Figures 5 and 8.

3. Investors may gamble by short-selling (borrowing) a stock even with positive (negative) risk
premium; see the lower panel of Figures 5 and 8.

Effects of Portfolio Constraints : Model-Specific Findings

Original Models Effects of Portfolio Constraints Found in This Paper

Browne (1999a) The optimal goal-reaching strategy is no longer equivalent
to the replicating strategy of a digital option; see Figure 9.

Berkelaar, Kouwenberg and Post (2004) Loss averse investors may further reduce stock investment;
see Figure 10.

Carpenter (2000) Convex incentives may reduce stock investment for wider
wealth levels; see Figure 11.

Basak, Pavlova and Shapiro (2007) The costs of misaligned incentives associated with delegated
portfolio management are alleviated; see Table 4.

He and Kou (2018) A larger performance fee is needed to make both fund man-
agers’ and investors’ utilities better off when adopting the
first-loss scheme in place of the traditional scheme; see Table
5.

Lee, Zapatero and Giga (2018) A narrower set of skewness is generated; see Figure 12.

• Theoretically, in view of the difficulties due to the non-concave value functions, we attempt

to do three things: (1) We introduce a new definition of viscosity solution; see Section 3.1. (2)

Based on the new definition, we establish the comparison principle (Theorem 3.1), which is used

to prove (in Theorem 3.2) that the value function of the non-concave utility maximization problem

is the unique viscosity solution (in terms of the new definition) of the Hamilton-Jacobi-Bellman

(HJB) equation. (3) We then show (in Theorem 3.3) that a monotone, stable, and consistent finite

difference scheme converges to the solution of the utility maximization problem.

1.3. Literature Review

DeMiguel et al. (2009) provide a general framework for combining portfolio constraints and estima-

tion for the mean variance investment problem, and show an excellent out-of-sample performance in

the presence of estimation error. Karatzas et al. (1991) and Cvitanić and Karatzas (1992) develop

a duality method for a concave utility optimization problem with convex portfolio constraints.

In particular, for the power utility with portfolio constraints, the optimal investment strategy is

myopic in the sense that no additional action would be made before the portfolio constraints are

binding (see, e.g. Grossman and Vila (1992) and Vila and Zariphopoulou (1997)). We complement
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this stream of the existing literature by showing that in the case of non-concave utility maximiza-

tion, the optimal investment strategy may no longer be myopic, in the sense that actions may

be taken before portfolio constraints being binding; see the upper panel of Figures 5 and 8. It is

worthwhile pointing out that an optimal investment strategy in incomplete market is often non-

myopic with respective to portfolio constraints (see, e.g., Dai, Jin and Liu (2011) for CRRA utility

maximization with transaction costs and Dai et al. (2018) for dynamic mean-variance analysis in

a general incomplete market), but the non-myopic phenomenon arising from non-concave utility

maximization occurs even in a complete market.

In terms of the economic and financial insights, we complement the existing literature of non-

concave utility maximization, e.g. Basak, Pavlova and Shapiro (2007), Berkelaar, Kouwenberg and

Post (2004), Browne (1999a), Carpenter (2000), He and Kou (2018), and Lee, Zapatero and Giga

(2018), by adding constraints, which leads to different insights.

Theoretically, there are at least two methods to solve utility maximization for concave utility

functions with portfolio constraints. One is the martingale duality method; see, e.g., Karatzas et

al. (1991) and Cvitanić and Karatzas (1992). Using the martingale duality method, Haugh, Kogan

and Wang (2006) derive an effective way to check whether a given control policy can lead to a good

approximation to the optimal control policy. Due to the nonconcave utility functions, in general it

is difficult to use the martingale duality method; one exception is Spivak and Cvitanić (1999), who

study the goal problem without constraints via the martingale duality method. That is the main

reason that we study the second method, which is based on partial differential equations.

Due to the presence of non-concavity, portfolio constraints, and possible discontinuities in the

objective functions, the value function may be globally non-concave and singular at the terminal

time. This poses a great challenge for the partial differential equation method. For example, it is

not easy to obtain the comparison principle and the uniqueness of viscosity solution to the HJB

equation, because the standard comparison principle for the HJB equations in Crandall, Ishii and

Lions (1992), which guarantees the uniqueness of viscosity solution, requires the continuity of the

viscosity solution.

Facing these challenges, we introduce a new definition of viscosity solution for discontinuous value

functions. The new definition satisfies some asymptotic conditions at the terminal time; see (18) or

(21). Then we show that comparison principle holds for the new definition of the viscosity solutions.

Interestingly, the asymptotic behavior implies that if the time horizon is too short, investors may

gamble by using as much leverage (borrowing or short-selling) as permitted when their target is

yet to be reached.

The finite difference method has been widely used to solve the HJB equations arising from

continuous time portfolio optimization problems (see, e.g., Barles and Souganidis (1991), Fleming
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Table 2 Comparison between Our Paper and Related Theoretical Papers

Non-concave Portfolio Optimization with Portfolio Constraints

Bian, Chen and Xu (2019) One side portfolio constraints for which the concavification
principle holds

This paper General portfolio constraints for which the concavification prin-
ciple may not hold

Viscosity Solutions

Crandall, Ishii and Lions (1992) Continuous viscosity solutions

This paper Discontinuous viscosity solutions

Convergence of Finite Difference Schemes Arising from Finance

Barles and Souganidies (1991),
Forsyth and Labahn (2007),
Wang and Forsyth (2008)

Continuous value functions

This paper Value functions are allowed to be discontinuous

and Soner (2006), Forsyth and Labahn (2007), and Wang and Forsyth (2008)). Using the new

definition of viscosity solution and the new comparison principle, we show that a monotone, stable,

and consistent finite difference scheme is still applicable and convergent even for discontinuous

utility with portfolio constraints. We then employ such a finite difference scheme to conduct an

extensive numerical analysis.

Bian, Chen and Xu (2019) investigate the non-concave utility optimization problem with one-

side portfolio constraints. They find that the concavification principle still holds and the standard

comparison principle remains valid. We complement their results by studying the two-side portfolio

constraints and discontinuous utility functions. In our study, the concavifiction principle may no

longer hold, the viscosity solution may be singular, and the classical comparison principle may not

hold. Table 2 offers a comparison of the current paper and the related literature on the theoretical

side.

The remainder of the paper is organized as follows. Section 2 presents the model setup and

several non-concave utility functions involved in the non-concave portfolio optimization problem.

Section 3 is devoted to theoretical analysis. An extensive numerical analysis is given in Section

4. We conclude in Section 5. The new definition of the viscosity solution and a new numerical

algorithm are presented in Appendix. All proofs and additional numerical results are relegated to

E-Companion.
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2. Model Formulation
2.1. The Financial Market

We consider a financial market that with one riskless bond with the constant risk-free rate r and

one risky stock. The dynamic of the risky stock follows the geometric Brownian motion:

dSt = µStdt+σStdBt, (1)

where Bt is the standard Brownian motion, and the drift µ and volatility σ are assumed to be

constant. Consider a self-financing portfolio strategy that invests Πt dollars in the stock at time t.

Then the value of the fund, W̃t, t≥ 0, evolves according to

dW̃t = rW̃tdt+ Πt[(µ− r)dt+σdBt].

Following Goetzmann, Ingersoll and Ross (2003), Hodder and Jackwerth (2007), and He and Kou

(2018), we add a liquidation constraint, that is, W̃t ≥Be−r(T−t), 0≤ t≤ T , for some non-negative

constant B.

For convenience, let πt := Πt/W̃t be the proportion of wealth invested in the stock, and let

Wt = W̃te
r(T−t), 0≤ t≤ T , be the (forward) wealth at time t. It follows that

dWt =Wtπt(ηdt+σdBt), (2)

where η= µ− r is the excess rate of return, and the liquidation constraint is simplified as

Wt ≥B, 0≤ t≤ T. (3)

2.2. The Non-Concave Utility Optimization Problem

Let U(·) be a utility that an agent will receive at a finite horizon T . The utility function U(·) is not

necessarily concave or continuous, but is assumed to satisfy the following assumption throughout

the paper.

Assumption 2.1. The utility function U(w), w ≥ B is nondecreasing, right-continuous,

bounded from below, and bounded above by a power utility wp when w is sufficiently large for

some 0< p< 1.

The agent attempts to choose an optimal portfolio strategy π to maximize the expected utility

of the terminal wealth WT , namely,

sup
d≤π≤u

E[U(WT )], (4)

where the wealth W follows (2) subject to liquidation constraint (3). Here, d and u are the constant

lower and upper portfolio constraints. Without loss of generality, we assume that d≤ 0 and u≥ 0
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throughout the paper.1 A finite upper bound u≥ 1 implies a borrowing constraint that limits the

leverage ratio. In particular, u = 1 means that no borrowing is permitted. On the other side, a

finite lower bound d ≤ 0 implies the degree of short-sale constraints. In particular, d = 0 means

that short-sale is prohibited.

2.3. Examples of Non-Concave Utility Functions

We will study some examples of non-concave utility functions in the existing literature.

2.3.1. A Discontinuous Utility of The Goal-Reaching Problem Many portfolio man-

agers are interested in achieving some performance goal, such as beating a stock index. Browne

(1999a) studies the optimal investment strategy of a fund manager who aims to maximize the prob-

ability of beating a benchmark by a given finite horizon, where the corresponding utility function

is expressed as an indicator function

U(w) = 1w≥1. (5)

Here w refers to the value of the fund under management normalized by the benchmark. The utility

function indicates that if the fund manager fails to reach the goal, then he will be indifferent to

any outcomes incurred. Note that the utility function is discontinuous and non-concave.

2.3.2. The S-shaped Utility of Prospect Theory Kahneman and Tversky (1979) propose

the following S-shaped utility function:

U(w) =

{
(w−W0)p for w>W0

−λ(W0−w)p for w≤W0,
(6)

where W0 is the reference point that distinguishes gains from losses, 0< p< 1 measures the degree

of risk aversion over gains, and the loss aversion coefficient λ> 1 indicates that the pain from one

dollar loss is higher than the pleasure from one dollar gain. Berkelaar, Kouwenberg and Post (2004)

study the optimal investment strategy with the S-shaped utility function (6).

2.3.3. The Delegated Portfolio Choice with Convex Compensation Schemes Dele-

gated fund managers are usually paid by convex compensation schemes, such as an option com-

pensation, management fee proportional to the asset under management which is convex on the

performance of the fund, or a performance fee linked to the profit which has limited liability.

Option Compensation. Carpenter (2000) considers a risk averse manager compensated with

a call option. The manager’s payoff at time T is α shares of call option over the fund that matures

at T with strike K, plus a constant base C. Then, the payoff function fCar is given by

fCar(w) = αmax{w−K,0}+C, (7)

1 Unbounded portfolio constraints are covered by setting d=−∞ and/or u=∞.
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where w is the terminal wealth level of the fund. Assume that the manager is risk averse over his

terminal payoff, then the utility function of the manager can be given by

U(w) = (fCar(w))p/p, (8)

where 0< p< 1. The convex structure of the option payoff makes the utility function U non-concave

over the terminal wealth level of the fund.

Convex Flow-Performance Relationship. Basak, Pavlova and Shapiro (2007) study a port-

folio choice model that the fund manager’s compensation is proportional to the assets under

management. The assets under management depend on the performance of the fund: in general,

outperformance attracts cash inflow and underperformance leads to money redemptions. For exam-

ple, the flow rate of the fund, fBPS, can be specified as follows:

fBPS(w) =

 fL for ln(w/W0)< ηL
fL +ψ(ln(w/W0)− ηL) for ηL ≤ ln(w/W0)< ηH
fH for ln(w/W0)≤ ηH ,

(9)

where W0 is the initial asset under management,2 ηL, ηH are the lower and upper performance

thresholds, fL, fH are the flow rate in case of bad and good performance, and ψ= (fH −fL)/(ηH −

ηL) such that the function fBPS(w) is continuous. If the manager is risk averse over the overall

value of assets under management at time T , the utility function of the manager can be modelled

by

U(w) = (wfBPS(w))p/p, (10)

which is non-concave over w due to the convex flow-performance fBPS(w).

Convex Performance Fee Schemes. He and Kou (2018) study the optimal investment strat-

egy of a fund manager with two kinds of performance fee schemes: the traditional scheme and the

first-loss scheme. By assuming that a proportion γ of the fund belongs to the manager and the

manager can charge a proportion α of the profit, the manager’s net profit-or-loss function under

the traditional scheme is given by

fT (w) =

{
(γ+α(1− γ))(w−W0) for w>W0

γ(w−W0) for 0≤w≤W0.
(11)

In contrast, under the first-loss scheme, the manager will firstly use his money in the fund to cover

the loss. Thus, the net profit-or-loss structure is changed into

fFL(w) =

 (γ+α(1− γ))(w−W0) for w>W0

w−W0 for (1− γ)W0 ≤w≤W0

−γW0 for 0≤w≤ (1− γ)W0.
(12)

2 Strictly speaking, Wt represents the time t relative performance, i.e. the ratio of the fund value to the benchmark.
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Assume the fund manager is risk averse over the profit and risk seeking over the loss, then the

utility function of the fund manager is given by

U(w) = g(fT (w)), or U(w) = g(fFL(w)), (13)

where g(·) is an S-shaped function defined by

g(z) =

{
zp for z > 0
−λ(−z)p for z ≤ 0,

with 0< p< 1. The non-concave feature of the utility function originates from both the S-shaped

function and the performance fee scheme.

2.3.4. Aspiration Utility Lee, Zapatero and Giga (2018) analyze the demand for skewness

that results from an aspiration utility similar to Diecidue and van de Ven (2008). In Lee, Zapatero

and Giga (2018), the economic agent cares not only about the normal consumption but also about

the status which is conveyed through the consumption of non-divisible good, such as a luxury car

or a house. So, the utility of the agent will jump when his wealth reaches the level from which he

can consume the non-divisible good. The utility function could be given by

U(w) =

{
u1(w) := wp

p
if w<R

u2(w) := c1
wp

p
+ c2 if w≥R, (14)

where w is the terminal wealth level, R is the aspiration level, 0< p< 1, and c1 > 1 and c2 ≥ 0 such

that U(R−)<U(R). The utility function jumps at the aspiration level R, thus it is non-concave.

3. Theoretical Analysis

This section is devoted to theoretical analysis for the portfolio optimization problem (4). Denote by

V (t,w) the value function of the optimization problem (4) conditional on Wt =w. At the terminal

time T , the value function equals the utility function by definition, i.e.

V (T,w) =U(w), for all w≥B. (15)

When Wt =B for some t < T , liquidation is necessary, which implies a boundary condition

V (t,B) =U(B), for all t≤ T. (16)

The value function formally satisfies the following HJB equation

∂V (t,w)

∂t
+ sup
d≤π≤u

{
1

2
π2w2σ2∂

2V (t,w)

∂w2
+πwη

∂V (t,w)

∂w

}
= 0, (17)

for t < T and w > B; we will justify this rigorously by introducing a new definition of viscosity

solution.
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3.1. A New Definition of Viscosity Solution

Facing the challenges of non-concavity, portfolio constraints, and possible discontinuity together,

we introduce a new definition of viscosity solution to the HJB equation in Appendix A, which adds

a special treatment at the terminal time T . To understand the intuition behind the new definition,

consider two cases.

(i) The portfolio set [d,u] is bounded. In this case, we later show that the value function satisfies

the following asymptotic property (see part (i) of Proposition EC.2.3):

lim
(t,ζ)→(T−,w)

V (t, ζ)−U(w−)− 2Φ

(
min{0, log ζ/w}
Lσ
√
T − t

)
(U(w)−U(w−)) = 0, (18)

where U(w−) is the left limit of U at w, U(B−) =U(B), L= max{u,−d}, and Φ(x) is the normal

cumulative distribution function. When the utility function U(·) is continuous, the asymptotic

condition (18) is simplified as

lim
(t,ζ)→(T−,w)

V (t, ζ) =U(w) = V (T,w), (19)

which implies the continuity of the value function at maturity. However, when the utility function

U(·) is discontinuous, e.g., at some w0, the value function has singularity at (T−,w0).

To elaborate the singularity, let us take the goal-reaching utility (5) as an example which is

discontinuous at w= 1. Then the asymptotic condition (18) reduces to

lim
(t,ζ)→(T−,1−)

V (t, ζ)− 2Φ

(
log ζ

Lσ
√
T − t

)
= 0. (20)

On the left hand side of (20), both terms have singularity at (T−,1−) but their difference vanishes.

In fact, the latter term proves to be the value function of an alternative goal-reaching problem that

only concerns about the diffusion term of the dynamic process (cf. Lemma EC.2.1).

The intuition behind (20) is the following: if the goal is yet to be reached (ζ < 1) for a sufficiently

short time to maturity, fund managers are inclined to use as much leverage or short-selling as

permitted to raise the likelihood of achieving the goal (i.e. π= u or π= d).

(ii) The portfolio set [d,u] is unbounded. In this case, the value function converges to the concave

envelope of the utility function, i.e.,

lim
(t,ζ)→(T−,w)

V (t, ζ) = Û(w), (21)

where Û is the concave envelope of U ; see part (ii) of Proposition EC.2.3 or Bian, Chen and Xu

(2019). Thus, for the one-side constraints, the value function is concave and the concavification

principle holds. The new definition of the viscosity solution is not needed for this case. Note that

for the two-side constraints, the concavification principle may not hold.
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3.2. Comparison Principle, Uniqueness of Viscosity Solution, and Convergence of a
Numerical Algorithm

The singularity of the value function at the terminal time brings a great challenge on comparison

principle and uniqueness of viscosity solution to the HJB equation. This is because the standard

comparison principle, which guarantees the uniqueness of viscosity solution, requires the continuity

of viscosity solution. The following theorem shows that a new comparison principle holds for the

new definition of the viscosity solutions, i.e. viscosity solutions satisfying the asymptotic property

(18) or (21).

Theorem 3.1 (Comparison Principle). (i) Assume the portfolio set [d,u] is bounded. Let v̄

and v be a viscosity subsolution and supersolution of the HJB equation (17), respectively, with the

boundary condition (16) and the asymptotic condition (18). Suppose v̄ and v are bounded in abso-

lute value by C1w
p +C2, for some 0< p< 1, C1,C2 > 0. Then v̄≤ v for all w≥B and 0< t< T .

(ii) Assume the portfolio set [d,u] is unbounded. Let v̄ and v be a viscosity subsolution and superso-

lution of the HJB equation (17), respectively, with the boundary condition (16) and the asymptotic

condition (21). Suppose v̄ and v are bounded in absolute value by C1w
p +C2, for some 0< p< 1,

C1,C2 > 0. Then v̄≤ v for all w≥B and 0< t< T .

Based on the new comparison principle, we can prove the following theorem that the value

function is the unique (new) viscosity solution of the HJB equation.

Theorem 3.2 (Uniqueness and a Link to the Value Function). (i) When the portfolio

set [d,u] is bounded, the value function V of (4) is the unique viscosity solution of the HJB equation

(17) with the boundary condition (16) and the asymptotic condition (18). Besides, V is continuous,

except at (T,w) where w denotes discontinuous point of U(·).

(ii) When the portfolio set [d,u] is unbounded, the value function V of (4) is the unique viscosity

solution of the HJB equation (17) with the boundary condition (16) and the asymptotic condition

(21). Besides, V (t,w) is continuous for t < T .

Since analytical solutions are usually unavailable for non-concave portfolio optimization with

portfolio constraints, we resort to the finite difference method to numerically solve for the value

function and the optimal portfolios. The following theorem gives the convergence of monotone,

stable, and consistent finite difference schemes.

Theorem 3.3 (Convergence of a Numerical Algorithm). The discrete solution of a

monotone, stable, and consistent finite difference scheme for the HJB equation (17) with the bound-

ary condition (16) and the asymptotic condition (18) (or (21)) converges to the value function as

the discretization size tends to zero.
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An example of the finite difference scheme described in the above theorem is a fully implicit finite

difference scheme with upwind treatment for the first-order derivatives (see, e.g., IX.3.13 of Fleming

and Soner (2006)). In our numerical experiments, according to Wang and Forsyth (2008), we employ

a different finite difference scheme satisfying the monotonicity, stability, and consistency, where

central differencing is used as much as possible to improve the accuracy while the monotonicity is

guaranteed. The detail of the monotone scheme is presented in Appendix B.

The proof of Theorem 3.3 relies on the method of viscosity solution by Barles and Souganidis

(1991), where the comparison principle for viscosity solutions, as given in Theorem 3.1, plays a

critical role.

3.3. Additional Remarks

Theorem 3.2 characterizes the value function V (t,w) as the unique viscosity solution of the HJB

equation (17). The value function is continuous at the liquidation boundary w=B, that is,

lim
(t′,ζ)→(t,B)

V (t′, ζ) =U(B) = V (t,B).

At the terminal time T , there are three cases.

(1). If the portfolio set [d,u] is bounded and the utility function U is continuous, part (i) of

Theorem 3.2 shows that the value function is continuous at the terminal condition, that is,

lim
(t,ζ)→(T−,w)

V (t, ζ) =U(w) = V (T,w).

(2). If the portfolio set [d,u] is unbounded, part (ii) of Theorem 3.2 shows3 that the value function

converges to the concave envelope of the utility function (see the right panel of Figures 4 and 7)

and thus is in general discontinuous, that is,

lim
(t,ζ)→(T−,w)

V (t, ζ) = Û(w) 6=U(w) in general.

(3). If the portfolio set [d,u] is bounded and the utility function U is discontinuous, part (i) of

Theorem 3.2 shows that the value function is discontinuous at (T,w) where w denotes discontinuous

point of U(·). Different from case (2), the left limit of the value function even does not exist (see

the left panel of Figures 4 and 7), that is,

lim
(t,ζ)→(T−,w)

V (t, ζ) does not exist,

where w denotes discontinuous point of U(·).

Part (ii) of Theorem 3.1 and part (ii) of Theorem 3.2 are related to continuous viscosity solutions

and have been obtained in existing literature (e.g., Bian, Chen and Xu (2019)). For completeness,

3 See also Bian, Chen and Xu (2019).
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we list them here. Note that a one-side portfolio constraint is unbounded. According to part (ii)

of Theorem 3.2, the corresponding non-concave utility U can be replaced by its concave envelope

Û(w). Thus, the non-concave portfolio optimization problem with one-side portfolio constraint

studied in Bian, Chen and Xu (2019) is essentially a concave one and is different from the one with

two-side portfolio constraints (i.e. bounded portfolio set).

4. Numerical Analysis

In this section, we employ the numerical scheme in Appendix B to conduct an extensive numerical

analysis. We will provide numerical evidences of the findings as given in Table 1.

4.1. General Findings

To demonstrate the general findings as given in Table 1, we employ the goal-reaching model and

the aspiration utility maximization model, by incorporating bounded portfolio constraints. Both

models have discontinuous utility functions. The cases without portfolio constraints have been

studied by Browne (1999b) and Lee, Zapatero and Giga (2018), respectively. Numerical evidences

for other models with portfolio constraints are similar and are given in E-Companion.

4.1.1. The Goal-Reaching Problem with Portfolio Constraints Take the goal-reaching

problem as in (5). We first consider the no-borrowing and no-short-sale constraints, i.e., [d,u] =

[0,1]. The default parameter values come from Browne (1999b): µ = 0.15, r = 0.07, σ = 0.3, and

B = 0 (no liquidation).
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Figure 3 A comparison between the constrained value function and the unconstrained value function

associated with the goal-reaching problem in Browne (1999a). It can be seen that the value function is globally

concave in the unconstrained case but is not concave in the constrained case. The dotted (dashed) line represents

the time 0 value function against wealth level in the constrained (no constrained) case. The parameters are:

r= 0.07, µ= 0.15, σ= 0.3, W0 = 1, T = 1, B = 0, and [d,u] = [0,1].
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In Figure 3, we plot the time 0 value functions against wealth level for the constrained case

(dotted line) and unconstrained case (dashed line), respectively. It can be seen that the value

function is globally concave in the unconstrained case, but is not concave in the constrained case.

This indicates that a non-concave optimization problem with (bounded) portfolio constraints can-

not be reduced to a concave optimization problem in general. It is worthwhile pointing out that

short selling is never optimal even in the unconstrained case (cf. Figure 1a). Hence, if only the

no-short-selling constraint is imposed, the corresponding value function must be the same as the

unconstrained value function that is concave, consistent with part (ii) of Theorem 3.2 (see also

Bian, Chen and Xu (2019)).

Figure 4 The constrained(left panel) and unconstrained (right panel) value functions associated with the

goal-reaching problem in Browne (1999a). The constrained value function is discontinuous at w= 1 and t= T−,

while the unconstrained value function converges to the concave envelope of the utility in the goal-reaching

problem as t→ T−. The parameters are: r= 0.07, µ= 0.15, σ= 0.3, W0 = 1, T = 1, B = 0, [d,u] = [0,1] and

L= max{−d,u}= 1.

In Figure 4, we give a 3-D plot of the value function against the wealth and the time to maturity

for the constrained case (left panel) and unconstrained case (right panel), respectively. It can

be seen that the value function in the constrained case has a singularity at w = 1 and t = T−,

consistent with part (i) of Theorem 3.2 (see also the asymptotic condition (18) or (20)), while the

unconstrained (or one-side portfolio constrained) value function converges to the concave envelope

of the utility in the goal-reaching problem as t→ T−, consistent with part (ii) of Theorem 3.2 (see

the asymptotic condition (21) or Bian, Chen and Xu (2019)).

In Figure 5, we plot the time 0 optimal fraction of total wealth invested in the stock π∗ against

wealth level for the constrained case (dotted line) and the Browne’s unconstrained case (dashed
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Figure 5 A comparison between the constrained strategy and the Browne’s unconstrained strategy. The upper

panel indicates that the constrained investors are non-myopic with respect to portfolio constraints, such that an

early action is taken before portfolio constraints being binding. The lower panel indicates that given a relatively

large loss, short-selling is likely optimal even with a positive risk premium, provided that a large short-selling ratio

(d=−2) is permitted. The dotted line is the time 0 optimal fraction of total wealth invested in the stock π∗

against wealth level for the constrained case, where the portfolio constraint is π ∈ [0,1] (upper panel) and

π ∈ [−2,1] (lower panel), respectively. The dashed line stands for the Browne’s unconstrained case (some part that

exceeds the scope of the figure is not displayed). Parameter values: r= 0.07, µ= 0.15, σ= 0.3, T = 1, and B = 0.

line). The portfolio constraints are π ∈ [0,1] for the upper panel and π ∈ [−2,1] for the lower panel,

respectively. For lower wealth level, the Browne’s strategy requires large leverage ratio that exceeds

the scope of the figure and is not displayed (see Figure 1a for a complete picture). Observe that

our constrained optimal strategy is not myopic with respect to portfolio constraints. For example,

the upper panel of Figure 5 shows that our constrained optimal portfolio (with portfolio constraint

π ∈ [0,1]) takes more weight on the stock than the Browne strategy does when the wealth is close

to the target level w= 1. This is because fund managers who face portfolio constraints would like

to raise risk exposure in advance to compensate for the potential binding of portfolio constraints.

The lower panel of Figure 5 presents a surprising result which is, however, consistent with the

implication of (18): given the positive risk premium µ− r= 0.08, the constrained optimal strategy

is to short sell the stock when the current wealth level is away from the target level w= 1. This is

because in this case a restricted short-sale is permitted, which induces fund managers to gamble

by taking the largest short-selling ratio π =−2, even in the presence of positive risk premium, as

the current wealth level is far below the target level w= 1.

Table 3 presents the length of time needed for a strategy to beat the benchmark strategy (All

Cash or All Stock) by 10% with a probability of 95% or 99% for the unconstrained case and the

constrained case (no-short-selling and no-borrowing, i.e. π ∈ [0,1]), respectively. The “All Cash”
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Time (in years) need to beat All Cash by 10% with high probability

Unconstrained Case Constrained Case: π ∈ [0,1]
Probability Browne Myopic Browne Our Strategy Kelly

95% 1.3 8.9 7.4 10.8
99% 13.8 26.9 22.6 49.9

Time (in years) need to beat All Stock by 10% with high probability

Unconstrained Case Constrained Case: π ∈ [0,1]
Probability Browne Myopic Browne Our Strategy Kelly

95% 86.3 201.5 131.8 693.5
99% 884.2 1193.1 943.6 3190.7

Table 3 The length of time needed to beat the benchmark strategy (All Cash or All Stock) by 10% with a

probability of 95% or 99%. Note that the constrained optimal strategy outperforms both the Kelly’s strategy and

the myopic Browne’s strategy. “All Cash” (“All Stock”) means a strategy putting all money in the riskless asset

(stock). “Browne” refers to the optimal strategy for the unconstrained case studied in Browne (1999a). “Our

Strategy” refers to the optimal strategy for the constrained case (no-short-selling and no-borrowing, i.e.

π ∈ [0,1]). “Myopic Browne” refers to the strategy that follows the “Browne” strategy before the constraints are

binding. “Kelly” refers to the Kelly strategy, namely π∗ = (µ− r)/σ2 = 88.9%. Default parameter values:

r= 0.07, µ= 0.15, σ= 0.3, T = 1, B = 0.

(“All Stock”) strategy means a strategy putting all money in the riskless asset (stock). “Browne”

refers to the Browne’s optimal strategy for the unconstrained case studied in Browne (1999a). “Our

Strategy” refers to the optimal strategy for the constrained case. “Myopic Browne” refers to the

strategy that follows the Browne’s strategy before the constraints are binding. “Kelly” refers to

the Kelly’s strategy, namely π∗ = (µ−r)/σ2 = 88.9%. Note that the Kelly’s strategy does not incur

short-selling or borrowing for the given parameter values.

From Table 3, we can see that for the unconstrained case, the Browne’s strategy is better than the

Kelly’s strategy. However, as showed in Figure 1a, the Browne’s strategy may incur an unlimited

leverage ratio. Under the no-borrowing and no-short-selling constraint, our constrained optimal

strategy outperforms both the Kelly’s strategy and the myopic Browne’s strategy. For example,

to beat the All Cash benchmark by 10% with a 95% probability, our strategy needs 7.4 years,

compared to 10.8 years needed by the Kelly’s strategy and 8.9 years by the myopic Browne’s

strategy. This is consistent with our previous result that the constrained optimal strategy is not

myopic.

4.1.2. The Aspiration Utility Maximization with Portfolio Constraints Now we study

how portfolio constraints affect the portfolio choice under the aspiration utility given in (14). The

unconstrained case with a discrete-time setting has been discussed in Lee, Zapatero and Giga

(2018). The default parameter values are set as following: c1 = 1.2, c2 = 0, p= 0.5, R= 1, µ= 0.07,

r= 0.03, σ= 0.3, W0 = 1 and B = 0.
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Figure 6 A comparison between our constrained value function and the unconstrained value function

associated with the portfolio optimization problem in Lee, Zapatero and Giga (2018). Observe that the value

function is globally concave in the unconstrained case but is not concave in the constrained case. The dotted line

is the time 0 value functions with portfolio constraints against wealth level, where the portfolio constraint is

π ∈ [0,1]. The dashed line stands for the value function without portfolio constraints. The parameters are:

c1 = 1.2, c2 = 0, p= 0.5, R= 1, µ= 0.07, r= 0.03, σ= 0.3, W0 = 1 and B = 0.

In Figure 6, we plot the time 0 value function against wealth level for the constrained case (dotted

line) and unconstrained case (dashed line), respectively. As in the goal-reaching problem, the value

function is globally concave in the unconstrained case but is not concave in the constrained case.

Figure 7 The constrained(left panel) and unconstrained (right panel) value functions associated with the

non-concave utility optimization problem discussed in Lee, Zapatero and Giga (2018). The constrained value

function is discontinuous at w=R− and t= T−, while the unconstrained value function converges to the concave

envelope of the aspiration utility at t→ T−. The parameter values are: r= 0.03, µ= 0.07, σ= 0.3, p= 0.5,

c1 = 1.2, c2 = 0, R= 1, B = 0, T = 1/12, W0 = 1, [d,u] = [0,1] and L= max{−d,u}= 1.
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In Figure 7, for the non-concave utility optimization problem discussed in Lee, Zapatero and

Giga (2018) where the utility is discontinuous at the aspiration level R, we give a 3-D plot of the

value functions against the wealth and the time to maturity for the constrained case (left panel) and

unconstrained case (right panel), respectively. As in the goal-reaching problem, it can be seen that

the constrained value function has a singularity at the aspiration level w =R− and the terminal

time t= T−, consistent with part (i) of Theorem 3.2 (see also the asymptotic condition (18)). As a

comparison, the unconstrained (or one-side portfolio constrained) value function converges to the

concave envelope of the aspiration utility at t→ T−, consistent with part (ii) of Theorem 3.2 (see

the asymptotic condition (21) or Bian, Chen and Xu (2019)).
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Figure 8 A comparison between our constrained strategy and the unconstrained strategy for the non-concave

utility optimization problem discussed in Lee, Zapatero and Giga (2018). The upper panel indicates that the

constrained investors are non-myopic with respect to portfolio constraints such that an early action is made

before portfolio constraints being binding. The lower panel indicates that given a relatively large loss, short-selling

is likely optimal even with a positive risk premium, provided that a large short-selling ratio (d=−2) is permitted.

The dotted (dashed) line is the time 0 optimal fraction of total wealth invested in the stock π∗ against wealth

level for the constrained (unconstrained) case. The portfolio constraints in the constrained case are π ∈ [0,1]

(upper panel) and π ∈ [−2,1] (lower panel), respectively. The parameter values are: r= 0.03, µ= 0.07, σ= 0.3,

p= 0.5, c1 = 1.2, c2 = 0, R= 1, B = 0, T = 1/12 and W0 = 1.

In Figure 8, we plot the time 0 optimal fraction of total wealth invested in the stock π∗ against

wealth level for the constrained case (dotted line) and the unconstrained case (dashed line), respec-

tively. The portfolio constraints are π ∈ [0,1] in the upper panel and π ∈ [−2,1] in the lower panel,

respectively. Since the utility is risk averse for extremely low or high wealth levels, the fraction of

total wealth invested in the stock tends to the Merton’s line as the wealth level approaches infinity
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or zero. It can be observed that similar to Figure 5, investors are non-myopic with respect to

portfolio constraints such that an early action is made before portfolio constraints being binding.

Similar to the lower panel of Figure 5, the lower panel of Figure 8 reveals that as the wealth

level moves far away from the aspiration level, short-selling is likely optimal even with a positive

risk premium, provided that a large short-selling ratio (d=−2) is permitted. The intuition is the

same as before: a large short-selling ratio induces investors to gamble.

4.2. Model-Specific Findings

Now we provide numerical evidences for those model-specific findings as given in Table 1.
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Figure 9 The time 0 optimal fraction of total wealth invested in the stock π∗ against wealth level for different

stock return µ. Observe that the constrained goal-reaching strategy depends on µ. Thus, it is no longer

equivalent to the replicating strategy of some digital option. Borrowing and short-selling are not permitted, i.e.

u= 1 and d= 0. Default parameter values: r= 0.07, µ= 0.15, σ= 0.3, T = 1,B = 0.

4.2.1. The Goal-Reaching Problem with Portfolio Constraints Without portfolio con-

straints, Browne (1999a) proves the equivalence between the unconstrained Browne’s strategy and

the replication strategy of a specific digital option under the Black-Scholes market.4 As a result, the

unconstrained Browne’s strategy must be independent with µ, the drift of the stock, when there

is only one stock. However, the constrained optimal strategy usually depends on µ, as revealed by

Figure 9. Thus, it is no longer equivalent to the replicating strategy of some digital option.

4.2.2. The S-Shaped Utilities with Portfolio Constraints Now we study how portfolio

constraints affect the portfolio choice of a behavioral investor with the S-shaped utility given in

(6). The unconstrained case has been discussed in Berkelaar, Kouwenberg and Post (2004). The

default parameter values are set as following: p= 0.5, λ= 2.25, r= 0.03, µ= 0.07, σ= 0.3, W0 = 1,

B = 0.5, and [d,u] = [0,1].

4 The result holds for a general complete market setting, see, e.g. the Neyman-Pearson lemma approach of Föllmer
and Leukert (1999), the martingale approach of Spivak and Cvitanić (1999) and the quantile approach of He and
Zhou (2011).
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Assuming no portfolio constraints, Berkelaar, Kouwenberg and Post (2004) show that compared

to the Merton strategy, a loss averse investor considerably reduces the weight on stocks around the

reference point W0 = 1, which offers an explanation of the equity premium puzzle since the wealth

levels of most investors are around W0 = 1. This is confirmed by Figure 10, where the portfolio

weight of the unconstrained strategy is below the Merton’s line for wealth level around W0 = 1.

Comparing to the unconstrained strategy, Figure 10 shows that the constrained optimal strategy

may further reduce weights on stocks around the reference point W0 = 1. The intuition is that the

constrained investor is more loss averse since a potential unlimited risk-seeking strategy in the loss

region is prohibited by portfolio constraints.
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Figure 10 A comparison among the time 0 Merton’s strategy (solid line), our constrained strategy (dotted

line), and the unconstrained strategy (dashed line) for the non-concave portfolio optimization problem discussed

in Berkelaar, Kouwenberg and Post (2004). Observe that around the wealth level w= 1, the unconstrained

portfolio is below the Merton line, and the constrained strategy may further reduce the weights on stock. Default

parameters values are r= 0.03, µ= 0.07, σ= 0.3, p= 0.5, λ= 2.25, W0 = 1, T = 1/12, B = 0.5, π ∈ [0,1] and

Merton line π∗ = (µ− r)/((1− p)σ2) = 88.9%.

4.2.3. The Delegated Portfolio Choice with Portfolio Constraints

Option Compensation

Now we study how portfolio constraints affect the risk incentive of a risk averse manager com-

pensated with a call option (7). The default parameter values are set as following: K = 1, α= 0.2,

C = 0.02, p= 0.5, r= 0.03, µ= 0.07, σ= 0.3, W0 = 1, T = 1, B = 0.5, and π ∈ [0,1].

In Figure 11, we plot the time 0 optimal fraction of total wealth invested in the stock π∗ against

wealth level for the Merton’s strategy (solid line), our constrained strategy (dotted line), and

the unconstrained strategy (dashed line), respectively. When the option is out of the money, the

unconstrained strategy requires a large leverage ratio that exceeds the scope of the figure. Assuming

no portfolio constraints, Carpenter (2000) shows that the option compensation may lead to less
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Figure 11 A comparison among the time 0 Merton’s strategy (solid line), our constrained strategy (dotted

line), and the unconstrained strategy (dashed line) for the delegated portfolio optimization with the option

compensation scheme discussed in Carpenter (2000). Observe that the unconstrained portfolio is below the

Merton line when the option is deeply in the money (e.g. w> 2), and the constrained portfolio is below the

Merton line for a wider wealth levels (e.g. w> 1.2). The parameters are: r= 0.03, µ= 0.07, σ= 0.3, p= 0.5, K = 1,

α= 0.2, C = 0.02, W0 = 1, T = 1, T − t= 1/12, B = 0.5, π ∈ [0,1], and Merton line π∗ = (µ− r)/σ2/(1−p) = 88.9%.

risk taking, compared with the Merton stategy. This is confirmed by Figure 11, where the portfolio

weight of the unconstrained strategy is below the Merton’s line when the option is deeply in the

money (e.g. w > 2). Interestingly, Figure 11 shows that for the constrained optimal strategy, the

risk reduction induced by the option compensation becomes more significant in a larger range (e.g.

w > 1.2). This is because the fear that the option ends up out of the money leads to risk averse,

while portfolio constraints further reduce risk-seeking.

Convex Flow-Performance Relationship

Now we incorporate portfolio constraints into the delegated portfolio optimization with the

convex flow-performance relationship and study the cost to investors induced by fund managers’

convex incentive. The default parameter values for the convex flow-performance relationship come

from Basak, Pavlova and Shapiro (2007): ηL =−0.08, ηH = 0.08, fL = 0.8, and fH = 1.5.

We examine how portfolio constraints affect the cost of delegation, which is the utility loss to

the investor due to the manager’s deviating from the investor’s optimal policy. Basak, Pavlova and

Shapiro (2007) point out that there are two types of delegation cost: the first derives from the

fact that the manager’s attitude towards risk could be different from the investor’s; the second

derives from the incentive induced by the convex flow-performance relationship. We only consider

the second type of delegation cost.

Assume that the investor is equipped with a power utility with the same risk-averse coefficient as

that of the manager. Then, the investor’s direct optimal policy is to follow the Merton’s strategy.

The cost of delegation, λ, is defined by

VI(0,W0) = ṼI(0, (1 +λ)W0), (22)
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where VI(0,W0) is the value function of the investor with initial fund value W0 at time 0 under

the manager’s optimal policy accounting for the local convex incentives, and ṼI(0, (1 + λ)W0) is

the value function of the investor with initial fund value (1 + λ)W0 at time 0 under the Merton’s

policy.

Table 4 exhibits the cost of delegation with and without portfolio constraints for different sets of

parameter values (e.g. time to maturity, Sharpe ratio). It can be seen that the portfolio constraints

reduce the cost of delegation, and the effect is significant when the time to maturity is short.

Intuitively, this is because portfolio constraints effectively prohibit an unlimited leverage that would

be otherwise adopted by the fund manager as the deadline approaches.

Time to Maturity T Cost of Delegation λ (%)
Unconstrained Case Constrained Case: π ∈ [0,1]

Stock with Lower Sharpe Ratio

1/12 -0.95 -0.03
1/2 -0.91 -0.47
1 -1.27 -1.11

Stock with Higher Sharpe Ratio

1/12 -1.56 -0.04
1/2 -3.42 -1.46
1 -3.26 -3.21

Table 4 A comparison of the cost of delegation between our constrained strategy and the unconstrained

strategy of Basak, Pavlova and Shapiro (2007). Observe that with portfolio constraints, the costs of misaligned

incentives associated with delegated portfolio management are alleviated. The first column is the time to maturity.

The second and the third columns are the cost of delegation for the cases that the manager faces no portfolio

constraint and the bounded portfolio constraint (π ∈ [0,1]), respectively. The parameter values for the upper panel

are: µ− r= 0.04, σ= 0.3, p= 0.5, and the parameter values for the lower panel are: µ− r= 0.08, σ= 0.2, p= 0.6.

The other common parameter values are: ηL =−0.08, ηH = 0.08, fL = 0.8, fH = 1.5, B = 0.5, and W0 = 1.

Convex Performance Fee Schemes

In Table 5, we show the effect of portfolio constraints on the value functions (utilities) of the

managers and the investors when the traditional scheme is replaced by a first-loss scheme. The

third and fourth columns list the utilities of the managers and the investors under the managers’

optimal unconstrained strategies and constrained strategies, respectively. In each parentheses, the

first number is the utility of the managers and the second number is the utility of the investors.

The ’*’ in the superscript means that the utility is improved when replacing the traditional scheme

with the first-loss scheme. The third and fourth columns show that, without portfolio constraints,

both the managers and the investors are better off when the traditional scheme (20% performance

fee) is replaced by the first-loss scheme (30% performance fee). However, if the performance fee in

the first-loss scheme is 40% or above, such substitution renders investors worse off. These results
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Utilities for Unconstrained Case Utilities for Constrained Case
Scheme Performance Fee Manager Investor Manager Investor

Stock with Lower Sharpe Ratio

Traditional α= 0.2 0.11 0.041 0.057 0.036
First-Loss α= 0.3 0.12∗ 0.043∗ 0.046 0.060∗

First-Loss α= 0.4 0.13∗ 0.036 0.056 0.051∗

First-Loss α= 0.5 0.15∗ 0.027 0.065∗ 0.039∗

Stock with Higher Sharpe Ratio

Traditional α= 0.2 0.14 0.038 0.056 0.023
First-Loss α= 0.3 0.15∗ 0.043∗ 0.031 0.060∗

First-Loss α= 0.4 0.18∗ 0.032 0.040 0.055∗

First-Loss α= 0.5 0.21∗ 0.020 0.050 0.047∗

First-Loss α= 0.6 0.24∗ 0.005 0.060∗ 0.035∗

Table 5 A comparison of the utilities improvement between our constrained strategy and the unconstrained

strategy of He and Kou (2018). Observe that the constrained case requires higher performance fee than the

unconstrained case to make both the utilities of the manager and investor better off when the traditional scheme

is replaced with the first-loss schemes. The first column is the type of compensation scheme, which would be

either the traditional scheme or the first-loss scheme. The second column is the performance fee. The third and

fourth columns (the fifth and sixth columns) are the utilities of the manager and his investor under the manager’s

optimal unconstrained strategies (constrained strategies), respectively. The ’*’ in the superscript means that the

utility is improved when replacing the traditional scheme with the first-loss scheme. The parameter values for the

upper panel are: µ− r= 0.04, σ= 0.3, p= 0.5, and the parameter values for the lower panel are: µ− r= 0.08,

σ= 0.2, p= 0.6. The other common parameter values are: γ = 0.1, T = 1, B = 0.5, W0 = 1, π ∈ [0,1].

are consistent with the general findings of He and Kou (2018). However, the fifth and sixth columns

show that, with the portfolio constraint π ∈ [0,1], the performance fee will be as high as 50% for

the upper panel (60% for the lower panel) so that both the utilities of the managers and investors

are better off when the traditional scheme is replaced with the first-loss schemes. We believe that

it is again because portfolio constraints prohibit unlimited risk-taking such that the managers with

the first-loss scheme demand a high performance fee as compensation.

4.2.4. The Aspiration Utilities with Portfolio Constraints Now we study the impli-

cation of the optimal constrained portfolio to the demand for the skewness under the aspiration

utility given in (14).

In Figure 12, we plot the skewness of the optimal terminal wealth against the wealth level

for the constrained strategy (dotted line) and the unconstrained strategy (dashed line). For the

unconstrained case, the skewness is negative when the wealth level is slightly smaller than the

aspiration level R= 1, and the skewness turns positive when the wealth level moves far away from

the aspiration level, consistent with the finding of Lee, Zapatero and Giga (2018) that investors’

demand for skewness is endogenous in the aspiration utility model.
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Figure 12 A comparison of the terminal wealth’s skewness between our constrained strategy and the

unconstrained strategy of Lee, Zapatero and Giga (2018). Observe that the demand for the positive skewness is

quite weak for the constrained case. The dotted (dashed) line is the terminal wealth’s skewness against the

current wealth level for the constrained (unconstrained) optimal strategy. For the unconstrained case, the investor

prefers negative (positive) skewness when his wealth level is close to (far away from) the aspiration level R= 1.

The parameter values are µ= 0.07, r= 0.03, σ= 0.3, p= 0.5, c1 = 1.2, c2 = 0, R= 1, B = 0, W0 = 1, and π ∈ [0,1].
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Figure 13 A comparison between our constrained strategy and the unconstrained strategy of Lee, Zapatero

and Giga (2018). Observe that comparing to the unconstrained case, the weights on stock are smaller in the

constrained case. The dotted line is the time 0 optimal fraction of total wealth invested in the stock π∗ against

the wealth level for our constrained optimal strategy, where the portfolio constraint is π ∈ [0,1]. The dashed line

stands for the optimal strategy of the unconstrained problem(some part that exceeds the scope of the figure is

not displayed). The parameter values are: r= 0.03, µ= 0.07, σ= 0.3, p= 0.5, c1 = 1.2, c2 = 0, R= 1, B = 0,

T = 1/12 and W0 = 1.

We can observe that with portfolio constraints the demand for the positive skewness is less.

To investigate the reason, we plot in Figure 13 (see also the upper panel of Figure 8) the time 0
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optimal fraction of total wealth invested in the stock π∗ against the wealth level for the constrained

case (dotted line) and the unconstrained case (dashed line), respectively. Observe that for the

unconstrained case, the optimal strategy requires a high leverage as the wealth level is far away from

the aspiration level R = 1, which incurs a positive skewness. However, such a gambling strategy

is prohibited by portfolio constraints so that the demand for the positive skewness is much less.

Figure 12 shows that the constrained strategy may still induce a significant demand for negative

skewness for the wealth level being close to the aspiration level R= 1. This is because the investors

only need a small gain to consume the status goods and thus considerably reduce the fraction of

wealth invested in the stock.

5. Conclusion

We provide a general framework for non-concave portfolio optimization, where two-side portfolio

constraints can be imposed and utility functions are allowed to be discontinuous. We show that

portfolio constraints significantly affect investors’ non-concave portfolio choice. More precisely,

we find that in general (i) with two-side portfolio constraints, the concavification principle does

not hold and the value function associated with non-concave portfolio optimization is generally

non-concave; (2) investors are not myopic with respect to portfolio constraints, in the sense that

they take actions in anticipation of portfolio constraints being potentially binding; and (3) a large

short-selling or leverage ratio may induce investors to gamble in the case of underperformance.

Theoretically, we prove a comparison principle for discontinuous viscosity solutions associated

with general non-concave portfolio optimization problems. Using the comparison principle, we show

that a monotone, stable, and consistent finite difference scheme is still applicable and convergent

for the general problems.

Appendix A: A New Definition of Viscosity Solution Used

Comparing with the standard definition of viscosity solution, for example Definition 7.4 of Crandall, Ishii

and Lions (1992) or Definition 1.1 of Barles and Souganidis (1991), the new definition pays special attention

to the asymptotic property (18).

To facilitate the presentation, define the lower semicontinuous envelope and upper semicontinuous envelope

of the value function V as

V∗(t,w) = lim inf
(t1,w1)→(t,w)

V (t1,w1), and V ∗(t,w) = lim sup
(t1,w1)→(t,w)

V (t1,w1), (23)

and define the Hamiltonian:

H(w,p,A) := sup
d≤π≤u

{1

2
π2w2σ2A+πwηp}, w > 0. (24)

Then, we can rewrite the HJB equation (17) as

− ∂V (t,w)

∂t
−H

(
w,
∂V (t,w)

∂w
,
∂2V (t,w)

∂w2

)
= 0.. (25)
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Note that H(w,p,A) is continuous except at A= 0 at which it is likely lower semicontinuous for unbounded

portfolio set [d,u] 5. So, we need to use its lower semicontinuousenvelope H∗ and upper semicontinuous

envelope H∗ (cf. (23)) to define the viscosity supersolution and subsolution as following:

Definition A.1. For w ≥ B, let K(w) = U(w) if the portfolio set [d,u] is bounded, and K(w) = Û(w)

if the portfolio set [d,u] is unbounded, where Û is the concave envelope of U . Define K(B−) =K(B) and

L= max{−d,u}. Let V be a locally bounded function.

(i). We say that V is a viscosity subsolution of the HJB equation (17) with the boundary condition (16) and

the asymptotic property (18) (or (21) for unbounded portfolio set) if it satisfies the following conditions:

a) For all smooth ψ such that V ∗ ≤ψ and V ∗(t̄, w̄) =ψ(t̄, w̄) for some (t̄, w̄)∈ [0, T )× (B,+∞),

−∂ψ(t̄, w̄)

∂t
−H∗

(
w̄,
∂ψ(t̄, w̄)

∂w
,
∂2ψ(t̄, w̄)

∂w2

)
≤ 0. (26)

b) For all 0≤ t < T ,

V ∗(t,B)≤K(B). (27)

c) For all w≥B,

lim sup
(t,ζ)→(T−,w)

V (t, ζ)−K(w−)− 2Φ

(
min{0, log ζ/w}
Lσ
√
T − t

)
(K(w)−K(w−))≤ 0. (28)

(ii). We say that V is a viscosity supersolution of the HJB equation (17) with the boundary condition (16)

and the asymptotic condition (18) (or (21) for unbounded portfolio set) if it satisfies the following conditions:

a) For all smooth ϕ such that V∗ ≥ϕ and V∗(t̄, w̄) =ϕ(t̄, w̄) for some (t̄, w̄)∈ [0, T )× (B,+∞),

−∂ϕ(t̄, w̄)

∂t
−H∗

(
w̄,
∂ϕ(t̄, w̄)

∂w
,
∂2ϕ(t̄, w̄)

∂w2

)
≥ 0. (29)

b) For all 0≤ t < T ,

V∗(t,B)≥K(B). (30)

c) For all w≥B,

lim inf
(t,ζ)→(T−,w)

V (t, ζ)−K(w−)− 2Φ

(
min{0, log ζ/w}
Lσ
√
T − t

)
(K(w)−K(w−))≥ 0. (31)

(iii). We say that V is a viscosity solution if it is both a viscosity supersolution and subsolution.

Appendix B: The Finite Difference Scheme Used

Given a big enough upper bound A > B. Let Σ∆ = {(tn,wi) : 0 ≤ n ≤ Nt,0 ≤ i ≤ Nw} be a discretization

mesh of the domain [0, T ]× [B,A] with fixed step size ∆t and ∆w. Let V n
i be the solution at grid (tn,wi) of

the following discretization version of the HJB equation (17):

− V n+1
i −V n

i

∆t
− sup
d≤π≤u

{
π2w2

i σ
2

2

V n
i+1− 2V n

i +V n
i−1

(∆w)2
+πwiη

∆V n
i (π)

∆w

}
= 0, (32)

5 When the portfolio set [d,u] is unbounded, the Hamiltonian H is continuous. When the portfolio set [d,u] is
unbounded, the Hamiltonian H is infinite for A> 0, finite and continuous for A< 0, and either finite or infinite at
A= 0; if it is finite at A= 0, it is left continuous at A= 0, and thus, it is lower-semicontinuous at A= 0.
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with the boundary and terminal conditions 6

V n
0 =U(B), V n

Nw
=U(A), n= 0,1,2, . . . ,Nt, (33)

V Nt
i =U(wi), i= 1,2 . . . ,Nw− 1. (34)

The first order difference ∆V n
i (π) is defined for d≤ π≤ u as following:

∆V n
i (π) =

 (V n
i+1−V n

i−1)/2 if |π|>πi,
V n
i+1−V n

i if |π|<πi and πη > 0,
V n
i −V n

i−1 if |π|<πi and πη < 0,
(35)

where πi = |η|∆w/(σ2wi), and the difference method at |π|= |πi| is chosen such that the objective function

of the optimization problem in (32) is upper semicontinuous. The difference form in (35) is to use maxi-

mal central differencing as that in Wang and Forsyth(2008). By Lemma EC.3.4, the scheme is monotone,

consistent and stable.

(32) is a nonlinear equation which can be solved by the following iterative procedure: V n,0
i = V n+1

i , and

given V n,k
i , let

πn,ki = arg sup
d≤π≤u

{
π2w2

i σ
2

2

V n,k
i+1 − 2V n,k

i +V n,k
i−1

(∆w)2
+πwiη

∆V n,k
i (π)

∆w

}
,

where ∆V n,k
i (π) is defined in (35) replacing all {n} in superscript by {n,k}, and V n,k+1

i solves the following

linear equations:

V n+1
i −V n,k+1

i

∆t
+

(πn,ki )2w2
i σ

2

2

V n,k+1
i+1 − 2V n,k+1

i +V n,k+1
i−1

(∆w)2
+πn,ki wiη

∆V n,k+1
i (πn,ki )

∆w
= 0.
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Appendix EC.1: Proof of Theorem 3.1

Before proceeding to the proof of the theorem, we present the closed-form classic solutions for the

constrained portfolio optimization problem under the power utility in the following lemma. The

results are guaranteed by a direct verification and thus the proof is omitted.

Lemma EC.1.1. If the utility function U(·) in (4) is given by the power function:

Q(q)(T,w) =wq/q,w > 0, for some q < 1 and q 6= 0, (EC.1)

and there is no liquidation constraint, that is B = 0, then, the optimal portfolio is given by

π∗ = d1π0<d +π01d≤π0≤u +u1π0>u, where π0 :=
η

(1− q)σ2
. (EC.2)

Let Λ = supd≤π≤u
{
ηπ− 1−q

2
σ2π2

}
= ηπ∗− 1−q

2
σ2π2

∗. The value function is given by

Q(q)(t,w) = Q̃(q)(t)wq/q, w > 0, 0≤ t≤ T, (EC.3)

where

Q̃(q)(t) = eqΛ(T−t), 0≤ t≤ T. (EC.4)

Proof of Theorem 3.1: We prove the theorem by contradiction. To help to derive a contradic-

tion, set û= eβ(t−T )(v̄)∗, v̂ = eβ(t−T )(v)∗, for some β > 0, where (v̄)∗ is the upper semicontinuous

envelope of v̄ and (v)∗ is the lower semicontinuous envelope of v (cf. (23)). Then û (v̂) is a subso-

lution (supersolution) to

− ∂V (t,w)

∂t
−H

(
w,
∂V (t,w)

∂w
,
∂2V (t,w)

∂w2

)
+βV (t,w) = 0. (EC.5)

Assume on the contrary that

û(t̄, w̄)− v̂(t̄, w̄) = 2δ > 0, (EC.6)

for some (t̄, w̄)∈ (0, T )× (B,∞). We are proceeding to derive a contradiction to this assumption.

First, we show that, for each positive α, we can find an interior point of (0, T )× (B,∞)× (0, T )×

(B,∞), named (tα,wα, sα, ζα), which makes Mα of (EC.7) take its maximum. Let

Mα(t,w, s, ζ) = û(t,w)− v̂(s, ζ)−ϕ(t,w, s, ζ), (EC.7)
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where the test function ϕ is specified as

ϕ(t,w, s, ζ) =ε3G(t,w, s, ζ) +
ε1
t

+
ε2

T − t
+
α

2
((t− s)2 + (w− ζ)2). (EC.8)

Here, G(t,w, s, ζ) =Q(q)(t,w) +Q(q)(s, ζ) and Q(q)(t,w) is given by (EC.3) in Lemma EC.1.1 for

some q, such that 1 > q > p, and ε1, ε2, and ε3 are positive and sufficiently small such that (cf.

(EC.6))

Mα(t̄, w̄, t̄, w̄)> δ. (EC.9)

By the condition that û and û are controlled by C1w
p+C2 for large w, they are bounded by Q(q) in

(EC.3) for large w. Thus, Mα of (EC.7) can not take maximum as w→∞. Furthermore, it can not

take take maximum at t= 0 or t= T , thanks to the term ε1
t

+ ε2
T−t in the test function ϕ in (EC.8).

Besides, by (27) and (30) of Definition A.1, û≤ v̂ at the liquidation boundary w =B. Thus, Mα

takes maximum at the interior points of (0, T )× (B,∞)× (0, T )× (B,∞), and we can denote one

of them as (tα,wα, sα, ζα).

Second, we show that we can fix ε2 > 0 sufficiently small, s.t. for α sufficiently large we have

ε1
t2α
≥ ε2

(T − tα)2
. (EC.10)

In order to prove that, for any ε1, ε2, ε3, sending α→∞, there exists a subsequence such that (see

Proposition 3.7 in Crandall, Ishii and Lions (1992))

lim
α→+∞

α((tα− sα)2 + (wα− ζα)2) = 0, (EC.11)

and both (tα,wα) and (sα, ζα) converge to some interior point (t̂, ŵ). The point depends on the

choice of ε1, ε2, and ε3. Let (t̂0, ŵ0) be a limit of (t̂, ŵ) as ε2 → 0. We assert that t̂0 < T . Then,

(EC.10) can be done accordingly. Now, we show that t̂0 <T . If t̂0 = T , according to (28) and (31),

we have

limsup
(t̂,ŵ)→(T−,ŵ0)

(û(t̂, ŵ)− v̂(t̂, ŵ))

≤ limsup
(t̂,ŵ)→(T−,ŵ0)

û(t̂, ŵ)−K(ŵ0−)− 2Φ

(
min{0, ln ŵ/ŵ0}
Lσ
√
T − t̂

)
(K(ŵ0)−K(ŵ0−))

− lim inf
(t̂,ŵ)→(T−,ŵ0)

v̂(t̂, ŵ)−K(ŵ0−)− 2Φ

(
min{0, ln ŵ/ŵ0}
Lσ
√
T − t̂

)
(K(ŵ0)−K(ŵ0−))

≤0,

which contradicts the fact that, for each ε2 and α (cf. (EC.7), (EC.8), (EC.9) and Mα takes

maximum at (tα,wα, sα, ζα)),

û(tα,wα)− v̂(sα, ζα)≥Mα(tα,wα, sα, ζα)≥Mα(t̄, w̄, t̄, w̄)> δ > 0. (EC.12)
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Thus, we have proved that t̂0 < T . Then we can choose ε2 sufficiently small, s.t. t̂ < T0+t̂0
2

, and

(EC.10) is satisfied for sufficiently large α.

Third, we apply the Ishii lemma (see Theorem 8.3 in Crandall, Ishii and Lions (1992)) to the

maximum point (tα,wα, sα, ζα) of Mα satisfying (EC.10) to derive a contradiction. For simplifica-

tion, in the following, we use (t,w, s, ζ) to represent (tα,wα, sα, ζα).

By Ishii’s lemma, for any γ > 0, there exist M,N , s.t.

−∂ϕ
∂t
−H∗

(
w,

∂ϕ

∂w
,M

)
+βû≤ 0, (EC.13)

∂ϕ

∂s
−H∗

(
ζ,−∂ϕ

∂ζ
,N

)
+βv̂≥ 0. (EC.14)

where ϕ is given in (EC.8), and(
M 0
0 −N

)
≤∇2

w,ζ ϕ+ γ
(
∇2
w,ζ ϕ

)2
(EC.15)

with

∇2
w,ζ ϕ=

(
∂2ϕ
∂w2

∂2ϕ
∂w∂ζ

∂2ϕ
∂w∂ζ

∂2ϕ
∂ζ2

)
.

By a direct calculation (cf. (EC.8)), we have

∂ϕ

∂t
=−ε1

t2
+

ε2
(T − t)2

+α(t− s) + ε3
∂G

∂t
,

∂ϕ

∂s
=−α(t− s) + ε3

∂G

∂s
, (EC.16)

∂ϕ

∂w
= α(w− ζ) + ε3

∂G

∂w
,

∂ϕ

∂ζ
=−α(w− ζ) + ε3

∂G

∂ζ
, (EC.17)

and

∇2
w,ζ ϕ= α

(
1 −1
−1 1

)
+ ε3

(
∂2G
∂w2 0

0 ∂2G
∂ζ2

)
.

Then, by (EC.15), for any pair of x, y, we have

Mx2−Ny2 =
(
x, y
)(M, 0

0, −N

)(
x
y

)
≤
(
x, y
) (
∇2
w,ζ ϕ+ γ(∇2

w,ζ ϕ)2
)(x

y

)
=α(x− y)2 + ε3

(
∂2G

∂w2
x2 +

∂2G

∂ζ2
y2

)
+ γ

(
x, y
)

(∇2
w,ζ ϕ)2

(
x
y

)
.

When α and ε3 are fixed, (t,w, s, ζ) is always in a bounded area. Thus, we can choose γ small

enough, such that

Mx2−Ny2 = α(x− y)2 + ε3

(
∂2G

∂w2
x2 +

∂2G

∂ζ2
y2

)
+ o(1), for any x, y. (EC.18)
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Recall (EC.13) and (EC.14). For the case that [d,u] is bounded, we have H∗ = H = H∗. For

the case that [d,u] is unbounded, H∗ = H and H∗ = H when M < 0. In (EC.18), we can take

x= y= c > 0, that is,

(M −N)c2 = ε3

(
∂2G

∂w2
c2 +

∂2G

∂ζ2
c2

)
+ o(1) =−ε3q(1− q)Q̃(q)(t)

(
wq−2c2 + ζq−2c2

)
+ o(1)< 0,

where Q̃(q)(t) is given by (EC.4) in Lemma EC.1.1 and is positive. Then, M <N . Furthermore,

by (EC.14) and (24), we have N ≤ 0, thus M < 0. So, in (EC.13) and (EC.14), we always have

H∗ =H =H∗.

Let x= πwσ and y= πζσ. Then, by (EC.13) and (EC.14), we have

0≤∂ϕ
∂t

+H

(
w,

∂ϕ

∂w
,M

)
−βû+

∂ϕ

∂s
−H

(
ζ,−∂ϕ

∂ζ
,N

)
+βv̂

=
∂ϕ

∂s
+
∂ϕ

∂t
+ sup
d≤π≤u

{
πwη

∂ϕ

∂w
+

1

2
x2M

}
− sup
d≤π≤u

{
πζη(−∂ϕ

∂ζ
) +

1

2
y2N

}
+β(v̂− û).

Plugging in the derivatives (EC.16) and (EC.17), by (EC.10), we have

0≤− ε1
t2

+
ε2

(T − t)2
+ ε3

∂G

∂s
+ ε3

∂G

∂t
+ sup
d≤π≤u

{
πwη(α(w− ζ) + ε3

∂G

∂w
)) +

1

2
Mx2

}
− sup
d≤π≤u

{
πζη(α(w− ζ)− ε3

∂G

∂ζ
) +

1

2
Ny2

}
+β(v̂− û)

≤ sup
d≤π≤u

{
πηα(w− ζ)2 + ε3πwη

∂G

∂w
+ ε3πζη

∂G

∂ζ
+

1

2
(Mx2−Ny2)

}
+ ε3

∂G

∂s
+ ε3

∂G

∂t
+β(v̂− û). (EC.19)

Recalling x= πwσ and y= πζσ, by (EC.11), for large π, we have

α(x− y)2 = π2σ2α(w− ζ)2 = π2o(1). (EC.20)

Then, by (EC.11), (EC.18) and (EC.20), (EC.19) becomes

0≤ sup
d≤π≤u

{
ε3πwη

∂G

∂w
+

1

2
ε3π

2w2σ2∂
2G

∂w2
+ ε3πζη

∂G

∂ζ
+

1

2
ε3π

2ζ2σ2∂
2G

∂ζ2
+ o(1)(1 +π+π2)

}
+ ε3

∂G

∂s
+ ε3

∂G

∂t
+β(v̂− û).

Note that ∂2G
∂w2 and ∂2G

∂ζ2 are strictly negative, thus o(1)(1 +π+π2) in brace is negligible even when

[d,u] is unbounded. Thus, we have

0≤ε3
(
∂G

∂t
+H

(
w,
∂G

∂w
,
∂2G

∂w2

))
+ ε3

(
∂G

∂s
+H

(
ζ,
∂G

∂ζ
,
∂2G

∂ζ2

))
+β(v̂− û) + o(1). (EC.21)

Recall that G(t,w, s, ζ) =Q(q)(t,w) +Q(q)(s, ζ) and Q(q)(t,w) given by (EC.3) in Lemma EC.1.1

satisfies the HJB equation (25), thus, (EC.21) can be simplified as,

0≤β(v̂− û) + o(1).

Using (EC.12), we have βδ < 0. Note that β > 0, then δ < 0, which contradicts to (EC.6). And the

theorem is proved. �
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Appendix EC.2: Proof of Theorem 3.2

We will take three steps to verify that the value function satisfies the conditions a), b), and c) in

Definition A.1. Then, the value function of (4) is a viscosity solution of the HJB equation (17) with

the boundary condition (16) and the asymptotic condition (18) (or (21) for unbounded portfolio

set). The uniqueness of the viscosity solution and the continuity of the value function before the

maturity are guaranteed by the comparison principle in Theorem 3.1. The property of the value

function at the maturity is fully characterized by the the asymptotic condition (18) (or (21) for

unbounded portfolio set). And thus Theorem 3.2 is proved.

Step 1: We verify Condition a) in Definition A.1.

In the standard viscosity solution approach (see. e.g. Chapter V of Fleming and Soner, 2006),

a dynamic programming principle based on the continuity of value functions is used to verify

Condition a). In our model, the utility function U is upper semicontinuous. Similar to Bouchard

and Touzi (2011), we first give a weak version of dynamic programming for the value function V .

Proposition EC.2.1 (Weak Dynamic Programming). Denote W t,w,π
s as the wealth pro-

cess Ws starting from Wt =w under the portfolio π. For any stopping time τ taking values within

[t, T ], and (t,w)∈ [0, T )× (B,+∞), we have

V (t,w)≤ sup
d≤π≤u

E[V ∗(τ,W t,w,π
τ )] (EC.22)

and

V (t,w)≥ sup
d≤π≤u

E[V∗(τ,W
t,w,π
τ )]. (EC.23)

Proof of Proposition EC.2.1: First, the inequality (EC.22) follows from the inequality (3.1) of

Bouchard and Touzi (2011), which is a direct consequence of the law of iterated expectations.

Next, we give the proof for the inequality (EC.23). For each portfolio π, denote

J(t,w;π) :=E[U(W t,w,π
T )]. (EC.24)

Bouchard and Touzi (2011) prove the inequality (EC.23) in their Corollary 3.6 under the assump-

tion that J(t,w;π) in (EC.24) is lower semicontinuous in (t,w), for any π ∈ [d,u]. In our problem,

by Assumption 2.1, the utility function U is upper semicontinuous and bounded by a power func-

tion wp when w is sufficiently large for some 0< p < 1. Then, J(t,w;π) is bounded by the value

function Q(p)(t,w) given in (EC.3). By the dominated convergence theorem and the continuity of

the controlled process W t,w,π
s , t≤ s < T , the function J(·, ·;π) is upper semicontinuous. However, by

Lemma 3.5 of Reny(1999), J(·, ·;π) can be approximated from above by a sequence of continuous
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functions (or lower semicontinuous functions in a wider domain of functions) on each compact

domain. So, we can mimic the proof of Bouchard and Touzi (2011) by firstly replacing J(·, ·;π) by

its continuous approximations, and then take a limit to recover J(·, ·;π). We give below the detail

of the proof.

By definition, for fixed ε > 0 and any (s, ζ), there exists a portfolio π(s,ζ) ∈ [d,u], such that

J(s, ζ;π(s,ζ))≥ V (s, ζ)− ε.

Consider any lower semicontinuous function ψ(s,ζ)(·) ≥ J(·;π(s,ζ)) and any upper semicontinuous

function ϕ≤ V (later, we will send ψ(s,ζ)(·)→ J(·;π(s,ζ)) and ϕ→ V∗ ). By the definition of semi-

continuity, there exists r(s,ζ) > 0, such that

ψ(s,ζ)(s1, ζ1)≥ψ(s,ζ)(s, ζ)− ε,ϕ(s1, ζ1)≤ϕ(s, ζ) + ε,

for any (s1, ζ1)∈B(s, ζ, r(s,ζ)),

where B(s, ζ, r(s,ζ)) := {(s1, ζ1) : |s1− s|< r(s,ζ), |ζ1− ζ|< r(s,ζ)}. Then

ψ(s,ζ)(s1, ζ1)≥ψ(s,ζ)(s, ζ)− ε≥ J(s, ζ;π(s,ζ))− ε≥ V (s, ζ)− 2ε≥ϕ(s, ζ)− 2ε

≥ϕ(s1, ζ1)− 3ε, for any (s1, ζ1)∈B(s, ζ, r(s,ζ)). (EC.25)

{B(s, ζ, r(s,ζ))}(s,ζ) forms an open covering of [0, T ] × [B,∞). Then by the Lindelöf covering

theorem, there exists a countable sequence (si, ζi)i≥1, such that the sequence of open sets

{B(si, ζi, r(si,ζi))}(si,ζi),i≥1 forms an open covering of [0, T ]× [B,∞). Then we can define a disjoint

partition {An}n≥1:

A1 :=B(s1, ζ1, r(s1,ζ1)),An :=B(sn, ζn, r(sn,ζn)) \ (∪1≤i≤n−1Ai), for n> 1.

Recalling (EC.25), for (τ,W t,w,π
τ )∈Ai, by setting π(s) = π(si,ζi)(s) for τ ≤ s≤ T , we have

ψ(si,ζi)(τ,W t,w,π
τ )1(τ,W

t,w,π
τ )∈Ai

≥ϕ(τ,W t,w,π
τ )1(τ,W

t,w,π
τ )∈Ai

− 3ε.

Now, we are ready to prove (EC.23). For any portfolio d≤ π≤ u, define the portfolio

πn(s) := π(s)1t≤s≤τ + 1τ≤s≤T

(
n∑
i=1

π(si,ζi)1(τ,W
t,w,π
τ )∈Ai

+π(s)1(τ,W
t,w,π
τ )/∈∪1≤i≤nAi

)
.

Then

n∑
i=1

ψ(si,ζi)(τ,W t,w,π
τ )1(τ,W

t,w,π
τ )∈Ai

≥
n∑
i=1

ϕ(τ,W t,w,π
τ )1(τ,W

t,w,π
τ )∈Ai

− 3ε,
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and

E[
n∑
i=1

ψ(si,ζi)(τ,W t,w,π
τ )1(τ,W

t,w,π
τ )∈Ai

+J((τ,W t,w,π
τ );π)1(τ,W

t,w,π
τ )/∈∪1≤i≤nAi

]

≥E[ϕ(τ,W t,w,π
τ )1(τ,W

t,w,π
τ )∈∪1≤i≤nAi

+J(τ,W t,w,π
τ ;π)1(τ,W

t,w,π
τ )/∈∪1≤i≤nAi

]− 3ε. (EC.26)

As aforementioned, for each (si, ζi), J(s, ζ;π(si,ζi)) is upper semicontinuous. By Lemma 3.5 of

Reny(1999), there exists a sequence of continuous functions {ψ̃(si,ζi)
j : j ≥ 1} such that

ψ̃
(si,ζi)
j (s, ζ)≥ J(s, ζ;π(si,ζi))

and limj→∞ ψ̃
(si,ζi)
j (s, ζ) = J(s, ζ;π(si,ζi)), for all (s, ζ) ∈ Ai. Let ψ

(si,ζi)
j := maxj≥j′ ψ̃

(si,ζi)

j′ , then

ψ
(si,ζi)
j is nonincreasing in j and converges to J(s, ζ;π(si,ζi)) as j tends to infinity. Similarly, we

can find a nondecreasing sequence of continuous functions {ϕj : j ≥ 1} such that ϕj(s, ζ)≤ V∗(s, ζ)

and limj→∞ϕj(s, ζ) = V∗(s, ζ) on ∪1≤i≤nAi. Replacing ψ(si,ζi) by ψ
(si,ζi)
j on the left hand side of

(EC.26), and replacing ϕ by ϕj on the right hand side of (EC.26), sending j→∞, by the monotone

convergence theorem, we have

E[
n∑
i=1

J(τ,W t,w,π
τ ;π(si,ζi))1(τ,W

t,w,π
τ )∈Ai

+J(τ,W t,w,π
τ ;π)1(τ,W

t,w,π
τ )/∈∪1≤i≤nAi

]

≥E[V∗(τ,W
t,w,π
τ )1(τ,W

t,w,π
τ )∈∪1≤i≤nAi

+J(τ,W t,w,π
τ ;π)1(τ,W

t,w,π
τ )/∈∪1≤i≤nAi

]− 3ε. (EC.27)

Note that the left hand side of (EC.27) is E[J(τ,W t,w,π
τ ;πn)]. Now, sending n→∞ on the right

side of (EC.27), by the dominated convergence theorem, we have

E[J(τ,W t,w,π
τ ;πn)]≥E[V∗(τ,W

t,w,π
τ )]− 3ε.

By the law of iterated expectations

V (t,w)≥E[J(t,w;πn)] =E[E[U(W t,w,πn
T )|F(τ)]]

=E[J(τ,W t,w,π
τ ;πn)]≥E[V∗(τ,W

t,w,π
τ )]− 3ε. (EC.28)

By the arbitrariness of π and ε, (EC.23) follows. �

Then, Condition a) is verified by Corollary 5.6 of Bouchard and Touzi (2011).

Step 2: We verify Condition b) in Definition A.1 by the following proposition.

Proposition EC.2.2. For all 0≤ t, t̄ < T and w>B ≥ 0, we have,

lim
(t,w)→(t̄,B)

V (t,w) =U(B). (EC.29)
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Proof of Proposition EC.2.2: For any portfolio π, define the first passage time τ bt,w,π = inf{s≥

t :Ws = b|Wt =w}. First, we show that, for any ζ > 0,

limsup
(t,w)→(t̄,B)

P
[
τB+ζ
t,w,π ≤min{τBt,w,π, T}

]
= 0. (EC.30)

Define τt,w,π = min{τBt,w,π, τ
B+ζ
t,w,π}, and let f(t,w) be the maximum probability that the wealth

process W hits B+ ζ before hitting B by maturity without portfolio constraints, provided that the

wealth process W starts at Wt =w, that is,

f(t,w) = sup
π

P
[
τB+ζ
t,w,π ≤min{τBt,w,π, T}

]
= sup

π
E[1{W t,w,π

τt,w,π∧T
≥B+ζ}] = sup

π
E[1{W t,w,π

T
≥B+ζ}], (EC.31)

where W t,w,π
T is the wealth at time T under portfolio π with initial value Wt =w. Without portfolio

constraints, the market is complete. A standard martingale approach gives that the optimal wealth

never hits the upper boundary B + ζ before maturity, and at maturity, it equals either B + ζ or

B, depending on whether an event {ρTt < c} happens for some constant c to be determined by the

budget constraint:

w=E
[
ρTt W

t,w,π
T

]
=E

[
ρTt

(
B ∗1{ρTt >c}+ (B+ ζ) ∗1{ρTt <c}

)]
=B+ ζE

[
ρTt ∗1{ρTt <c}

]
, (EC.32)

where ρTt is the pricing kernel, ρTt = exp{−θ(BT − Bt)− 1
2
θ2(T − t)}, and θ = η/σ is the market

price of risk. Let w→B in (EC.32), we have c→ 0. Then, by (EC.31), we have,

limsup
(t,w)→(t̄,B)

P
[
τB+ζ
t,w,π ≤min{τBt,w,π, T}

]
≤ limsup

(t,w)→(t̄,B)

f(t,w) = lim sup
(t,w)→(t̄,B)

P[ρTt < c] = 0. (EC.33)

That is, (EC.30) is proved.

Second, we prove (EC.29). For any ζ > 0,

V (t,w)≤ sup
d≤π≤u

E[U(W t,w,π
T )1

τ
B+ζ
t,w,π≤min{τBt,w,π ,T}

] + sup
d≤π≤u

E[U(W t,w,π
T )1

τ
B+ζ
t,w,π>min{τBt,w,π ,T}

]. (EC.34)

The second term on the right hand side of (EC.34) is bounded by U(B+ ζ). If the first term goes

to zero as (t,w)→ (t̄,B), then

limsup
(t,w)→(t̄,B)

V (t,w)≤U(B+ ζ).

Letting ζ decrease to zero, since U(·) is nondecreasing and right-continuous, we get

limsup
(t,w)→(t̄,B)

V (t,w)≤U(B).
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On the other side, it is trivial that

lim inf
(t,w)→(t̄,B)

V (t,w)≥U(B).

Thus, (EC.29) holds and the proposition is proved.

Last, we verify that the first term on the right hand side of (EC.34) goes to zero as (t,w)→ (t̄,B).

If U is bounded by a finite constant M , by (EC.33)

limsup
(t,w)→(t̄,B)

sup
d≤π≤u

E[U(W t,w,π
T )1

τ
B+ζ
t,w,π≤min{τBt,w,π ,T}

]

≤M limsup
(t,w)→(t̄,B)

sup
d≤π≤u

E[1
τ
B+ζ
t,w,π≤min{τBt,w,π ,T}

] = 0.

If U is unbounded,

sup
d≤π≤u

E[U(W t,w,π
T )1

τ
B+ζ
t,w,π≤min{τBt,w,π ,T}

]

= sup
d≤π≤u

E[U(W t,w,π
T )1

τ
B+ζ
t,w,π≤min{τBt,w,π ,T},U(W

t,w,π
T

)>U(A)
]

+ sup
d≤π≤u

E[U(W t,w,π
T )1

τ
B+ζ
t,w,π≤min{τBt,w,π ,T},U(W

t,w,π
T

)≤U(A)
]

≤U(A) sup
d≤π≤u

E[U(W t,w,π
T )/U(A)1U(W

t,w,π
T

)>U(A)] +U(A)1
τ
B+ζ
t,w,π≤min{τBt,w,π ,T}

≤U(A) sup
d≤π≤u

E[(U(W t,w,π
T )/U(A))q1U(W

t,w,π
T

)>U(A)] +U(A)f(t,w)

≤ sup
d≤π≤u

E[(W t,w,π
T )pq]/(U(A))q−1 +U(A)f(t,w)

≤Q(pq)(t,w)/(U(A))q−1 +U(A)f(t,w), for any A>B, (EC.35)

where q > 1 is chosen such that pq < 1 and Q(pq)(t,w) is given by (EC.3). The third inequality holds

since (U(w))q is bounded from above by wpq for large w (cf. Assumption 2.1). When (t,w)→ (t̄,B),

by (EC.33), f(t,w)→ 0. We can choose A→∞, such that U(A)→ 0 and U(A)f(t,w)→ 0. Thus,

by (EC.35), we have

lim
(t,w)→(t̄,B)

sup
d≤π≤u

E[U(W t,w,π
T )1

τ
B+ζ
t,w,π≤min{τBt,w,π ,T}

] = 0.

�

Step 3: We verify Condition c) in Definition A.1 by the following proposition.

Proposition EC.2.3. Denote Û as the concave envelope of U .

(i). When the portfolio set [d,u] is bounded, denoting L= max{u,−d} and U(B−) =U(B), for any

w≥B, we have

lim
(t,ζ)→(T−,w)

V (t, ζ)−U(w−)− 2Φ

(
min{0, log ζ/w}
Lσ
√
T − t

)
(U(w)−U(w−)) = 0.
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Here Φ(·) is the cumulative distribution function of the standard normal random variable, and

U(w−) is the left limit of U at w.

(ii). When the portfolio set [d,u] is unbounded, for any w≥B, we have

lim
(t,ζ)→(T−,w)

V (t, ζ) = Û(w).

To prove Proposition EC.2.3(i), we need Proposition EC.2.4 below which focuses on the simplest

discontinuous case: the goal-reaching problem. We present Proposition EC.2.4 first, while its proof

will be proposed at the end of the proof for Proposition EC.2.3(i).

Proposition EC.2.4. Assume that d,u are finite. For t < T and 0 ≤ w ≤ 1, let V (t,w) :=

sup
d≤π≤u

E[1WT≥1|Wt =w] be the value function of the goal-reaching problem, then

limsup
t→T−

sup
0≤w≤1

∣∣∣V (t,w)− f(
logw√
T − t

)
∣∣∣= 0, (EC.36)

where f(z) := 2Φ(min{0,z}
Lσ

), L := max{u,−d}<+∞, and Φ(·) is the cumulative probability of the

standard normal distribution. More specifically,

f

(
logw√
T − t

− a
√
T − t

)
≤ V (t,w)≤ f

(
logw√
T − t

+ a
√
T − t

)
, (EC.37)

where a := max
d≤π≤u

{|ηπ− 1
2
σ2π2|}<+∞.

Proof of Proposition EC.2.3(i): Here, the portfolio set [d,u] is bounded. Let a and f(·) be

given in Proposition EC.2.4. Define Ṽ (t, y) := V (t,w), where y= logw, then Ṽ is the value function

associated with the utility Ũ(y) := U(ey)≤C1 +C2e
py and the log-wealth process Y t,y,π

s = logWs,

satisfying

dY t,y,π
s = (ηπs−

1

2
σ2π2

s)ds+σπsdBs, Y t,y,π
t = y. (EC.38)

We aim to prove that, for any y0,

lim
(t,y)→(T−,y0)

Ṽ (t, y)− Ũ(y0−)− f
(
y− y0√
T − t

)
(Ũ(y0)− Ũ(y0−)) = 0. (EC.39)

First, we show that under bounded portfolio constraints, the controlled process Y of (EC.38) will

not move too far away from its initial point in short time. To be more specific, for a fixed y0 and

any ε > 0, since Ũ is nondecreasing and right-continuous, there exists a δ > 0, s.t.

Ũ(y0−)− ε≤ Ũ(y)≤ Ũ(y0−), when y0− δ≤ y < y0, (EC.40)

Ũ(y0)≤ Ũ(y)≤ Ũ(y0) + ε, when y0 ≤ y≤ y0 + δ. (EC.41)



e-companion to Author: Non-Concave Utility Maximization ec11

Then, for any y such that |y− y0| ≤ δ/2, by the second inequality of (EC.37), for any π ∈ [d,u], we

have

P(Y t,y,π
T ≥ y0 + δ) = P(Y t,y−y0−δ,π

T ≥ 0)≤ f
(
y− y0− δ√

T − t
+ a
√
T − t

)
. (EC.42)

Note that for |y − y0| ≤ δ/2, y − y0 − δ < −δ/2, thus the right hand of (EC.42) goes to zero as

t→ T . Similarly, considering the process −Y instead of Y , by the second inequality of (EC.37),

for any π ∈ [d,u], we have

P(Y t,y,π
T ≤ y0− δ) = P(−Y t,y−y0+δ,π

T ≥ 0)≤ f
(
y0− y− δ√

T − t
+ a
√
T − t

)
. (EC.43)

The right hand of (EC.43) also goes to zero as t→ T , since y0 − y − δ <−δ/2 for |y − y0| ≤ δ/2.

That is, as the control π ∈ [d,u] is bounded, the terminal log-wealth Y t,y,π
T concentrates on the

domain (y0− δ, y0 + δ) when T − t is small.

Second, we prove (EC.39). Let Ũ1(y) := Ũ(y0−) + 1y≥y0
(Ũ(y0) − Ũ(y0−)), which is a linear

transformation of the goal-reaching utility. Let Ṽ1(t, y) be the value function for the optimization

problem with the utility Ũ1(y) and the log-wealth process Y of (EC.38). Then, it is a linear

transformation of the value function in Proposition EC.2.4. By (EC.36), we have

lim
(t,y)→(T−,y0)

Ṽ1(t, y)− Ũ(y0−)− f
(
y− y0√
T − t

)
(Ũ(y0)− Ũ(y0−)) = 0. (EC.44)

By (EC.40), (EC.41) and the definition of Ũ1, we have

E[|Ũ(y)− Ũ1(y)|]≤ ε, when |y− y0| ≤ δ.

Then, for any strategy π,

E[|Ũ(Y t,y,π
T )− Ũ1(Y t,y,π

T )|]

≤ε E[1{|Y t,y,π
T

−y0|≤δ}
] +E[|Ũ(Y t,y,π

T )− Ũ(y0)|1{Y t,y,π
T

>y0+δ}] +E[|Ũ(Y t,y,π
T )− Ũ(y0−)|1{Y t,y,π

T
<y0−δ}

]

≤ε+E[(C1 +C2e
pY

t,y,π
T + |Ũ(y0)|)1{Y t,y,π

T
>y0+δ}] +E[(C1 +C2e

−pY t,y,π
T + |Ũ(y0−)|)1{Y t,y,π

T
<y0−δ}

].

By integration by part, we have

E[|Ũ(Y t,y,π
T )− Ũ1(Y t,y,π

T )|]

≤ε+ (C1 + |Ũ(y0)|+C2e
p(y0+δ))P[Y t,y,π

T > y0 + δ] + (C1 + |Ũ(y0−)|+C2e
−p(y0−δ))P[Y t,y,π

T < y0− δ]

+C2

∫ ∞
δ

pep(y0+v)P(Y t,y,π
T ≥ y0 + v)dv+C2

∫ ∞
δ

pe−p(y0−v)P(Y t,y,π
T ≤ y0− v)dv.
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By (EC.42) and (EC.43), we have

E[|Ũ(Y t,y,π
T )− Ũ1(Y t,y,π

T )|]

≤ε+ (C1 + |Ũ(y0)|+C2e
p(y0+δ))f(

y− y0− δ+ a(T − t)√
T − t

)

+ (C1 + |Ũ(y0−)|+C2e
−p(y0−δ))f(

y0− y− δ+ a(T − t)√
T − t

)

+C2

∫ ∞
δ

(
pep(y0+v)f(

y− y0− v+ a(T − t)√
T − t

) + pe−p(y0−v)f(
y0− y− v+ a(T − t)√

T − t
)

)
dv.

The bound is independent with π. Then taking supremum for π ∈ [d,u] and sending t→ T , since

y− y0− v <−δ/2 and y0− y− v <−δ/2 for |y− y0| ≤ δ/2 and v≥ δ, we have

limsup
t→T

sup
d≤π≤u

E[|Ũ(Y t,y,π
T )− Ũ1(Y t,y,π

T )|]≤ ε.

Then

limsup
(t,y)→(T−,y0)

|Ṽ (t, y)− Ṽ1(t, y)| ≤ limsup
(t,y)→(T,y0)

sup
d≤π≤u

E[|Ũ(Y t,y,π
T )− Ũ1(Y t,y,π

T )|]≤ ε.

Since ε is arbitrary, we have lim(t,y)→(T−,y0) |Ṽ (t, y)− Ṽ1(t, y)|= 0. Then (EC.39) follows by (EC.44).

Hence, Proposition EC.2.3(i) is proved. �

We now proceed to prove Proposition EC.2.4, which relies on Lemma EC.2.1 below. After the

logarithmic transformation Y t,y,π
s = logWs, s≥ t and Y t,y,π

t = y = logw, the optimization problem

in Proposition EC.2.4 can be reformulated as

Ṽ (t, y) := sup
d≤π≤u

E[1Y t,y,π
T

≥0], (EC.45)

where the log-wealth process Y is given in (EC.38). Then, Ṽ (t, y) = V (t,w) with y= logw.

As t approaches T , it is anticipated that the volatility term (of order
√
T − t ) rather than the

drift term (of order T − t ) plays a dominant role. Thus, we first study a goal-reaching problem

discarding the drift term, which turns out to have a closed-form solution.

Lemma EC.2.1. For 0≤ t≤ T, y≤ 0, let G(t, y) be the value function of the following problem:

G(t, y) := sup
d≤π≤u

E[1Ȳ t,y,π
T

≥0]

s.t. dȲ t,y,π
s = σπsdBs, t < s≤ T, and Ȳ t,y,π

t = y. (EC.46)

Then G(t, y) = f( y√
T−t), where f is as defined in Proposition EC.2.4.

Note that f( y√
T−t) = P(maxt≤s≤T Ȳ

t,y,π
s ≥ 0), where π ≡ l := u ∗ 1{u≥−d}+ d ∗ 1{u<−d}. Thus, the

lemma says that it is optimal to apply the maximum leverage or short-sale πs = l and switch to

πs = 0 once the goal is reached.
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Proof of Lemma EC.2.1: First, we show that G(t, y) = g( y√
T−t), for some function g(z). Con-

sider any two points (y1, t1) and (y2, t2) such that tt, t2 <T , y1, y2 < 0 and y1√
T−t1

= y2√
T−t2

. For any

adapted strategy πs, t1 ≤ s≤ T , and a time-change C(s) := t1 + T−t1
T−t2

(s− t2) for s ∈ [t2, T ], we can

define an adapted strategy π̂s := πC(s) and a new Brownion motion B̂s :=
√

T−t2
T−t1

(
BC(s)−Bt1

)
for

s∈ [t2, T ]. By (EC.46),

Ȳ t1,y1,π
T − y1 =

∫ T

t1

σπsdBs =

∫ C(T )

C(t2)

σπsdBs =

∫ T

t2

σπC(s)dBC(s) =

√
T − t1
T − t2

∫ T

t2

σπ̂sdB̂s

d
=

√
T − t1
T − t2

(
Ȳ t2,y2,π̂
T − y2

)
, (EC.47)

where
d
= represents “equal in distribution”. Recalling that y1√

T−t1
= y2√

T−t2
, we have,

P(Ȳ t1,y1,π
T ≥ 0) =P(Ȳ t1,y1,π

T − y1 ≥−y1) = P(

√
T − t1
T − t2

(
Ȳ t2,y2,π̂
T − y2

)
≥−
√
T − t1√
T − t2

y2)

=P(Ȳ t2,y2,π̂
T − y2 ≥−y2) = P(Ȳ t2,y2,π̂

T ≥ 0).

This means G(t1, y1)≤G(t2, y2). For the same reason, G(t2, y2)≤G(t1, y1).

Second, we show that g(z) is the unique viscosity solution to the ODE{
−zg′(z)− supd≤π≤u{σ2π2g′′(z)}= 0, z < 0,
g(0) = 1, lim

z→−∞
g(z) = 0. (EC.48)

The uniqueness holds by a standard approach to proving the comparison principle of this ODE,

which we omit here. We only verify that g(z) is a viscosity solution to the above ODE. By Propo-

sition EC.2.1 (Weak Dynamic Programming) and Corollary 5.6 of Bouchard and Touzi (2011), if

h∈C1,2([0, T )× (−∞,0)) and h−G∗ attains local minimum 0 at (t̄, y0), then

− ∂

∂t
h(t̄, y0)− sup

d≤πt≤u

{
1

2
σ2π2

t

∂2

∂y2
h(t̄, y0)

}
≤ 0.

Now consider a function φ∈C2((−∞,0]), such that φ(z)−g∗(z) attains local minimum 0 at interior

point −∞ < z0 < 0, then φ( y√
T−t) ∈ C

1,2([0, T ) × (−∞,0)), and φ( y√
T−t) − G

∗(t, y) attains local

minimum 0 at point (t,
√
T − t z0) for any 0≤ t < T . Then, for any 0≤ t < T , we have

− ∂

∂t
φ(

y√
T − t

)
∣∣
{y=
√
T−t z0}

− sup
d≤πt≤u

{
1

2
σ2π2

t

∂2

∂y2
φ(

y√
T − t

)
∣∣
{y=
√
T−t z0}

}
≤ 0.

By a direct calculation, we have

−z0φ
′(z0)− sup

d≤π≤u

{
σ2π2φ′′(z0)

}
≤ 0.

Since g∗(0) = 1 and lim
z→−∞

g∗(w) = 0, we infer that g∗ is a viscosity subsolution of (EC.48). A similar

argument shows that g∗ is a viscosity supersolution. Therefore, g is a viscosity solution of (EC.48).
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Third, a direct calculation shows that f is a classical solution to{
−zf ′(z)−L2σ2f ′′(z) = 0, z < 0,
f(0) = 1, lim

z→−∞
f(z) = 0.

By the convexity of f , f is also a classical solution to{
−zf ′(z)− supd≤π≤u {σ2π2f ′′(z)}= 0, z < 0,
f(0) = 1, lim

z→−∞
f(z) = 0.

By the uniqueness of viscosity solution, we prove the lemma. �

Proof of Proposition EC.2.4: For any (t, y) ∈ [0, T )× (−∞,0], let Y t,y,π
s be given in (EC.38)

with starting point Y t,y,π
t = y and portfolio πs, t≤ s≤ T , and let Ȳ t,y+a(T−t),π

s be given in (EC.46)

with starting point Ȳ t,y+a(T−t),π
s = y + a(T − t) and the same portfolio πs, t ≤ s ≤ T . Recalling

that a := max
d≤π≤u

{|ηπ− 1
2
σ2π2|}<+∞, by comparison, we have Y t,y,π

T ≤ Ȳ t,y+a(T−t),π
T , a.s. Similarly

Y t,y,π
T ≥ Ȳ t,y−a(T−t),π

T , a.s. Then,

G(t, y− a(T − t))≤ Ṽ (t, y)≤G(t, y+ a(T − t)),

where G(t, y) = f( y√
T−t) is given in Lemma EC.2.1. So,

f(
y√
T − t

− a
√
T − t)≤ Ṽ (t, y)≤ f(

y√
T − t

+ a
√
T − t).

By the uniform continuity of f , the proposition is proved. �

Bian, Chen and Xu (2019) give a proof for Proposition EC.2.3(ii). Here, we provide an alternative

proof. First, we introduce two lemmas.

Lemma EC.2.2. In the case u= +∞ or d=−∞, we have that

V (t, λw1 + (1−λ)w2)≥ λU(w1) + (1−λ)U(w2), for all 0<λ< 1, t < T. (EC.49)

Proof of Lemma EC.2.2: First, consider the case that u= +∞. For t < T , given w1 and w2,

denote w = λw1 + (1− λ)w2, and let W t,w,n
s , t≤ s≤ T be the wealth process with W t,w,n

t =w and

a constant proportion strategy πs ≡ n. Define the stopping times{
τ

(n)
1 := inf{s≥ t|W t,w,n

s =w1},
τ

(n)
2 := inf{s≥ t|W t,w,n

s =w2}.

Next, we show that

lim
n→+∞

P(τ
(n)
1 <min{τ (n)

2 , T}) = λ, (EC.50)

lim
n→+∞

P(τ
(n)
2 <min{τ (n)

1 , T}) = 1−λ. (EC.51)
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Note that

dW t,w,n
s /W t,w,n

s =ηnds+σndBs, t≤ s≤ T.

By rescaling the process, define W̃ t,w,n
s :=W t,w,n

t+(s−t)/n2 , t≤ s≤ t+n2(T − t) and W̃ t,w,n
t =w, then

dW̃ t,y,n
s /W̃ t,y,n

s =
η

n
ds+σdB(n)

s , t≤ s≤ t+n2(T − t), (EC.52)

where B(n)
s is a standard Brownian motion. Define the stopping times{

τ̃
(n)
1 := inf{s≥ t|W̃ t,w,n

s =w1},
τ̃

(n)
2 := inf{s≥ t|W̃ t,w,n

s =w2},

Then, by definition

P(τ
(n)
1 <min{τ (n)

2 , T}) = P(τ̃
(n)
1 <min{τ̃ (n)

2 , t+n2(T − t)}), (EC.53)

P(τ
(n)
2 <min{τ (n)

1 , T}) = P(τ̃
(n)
2 <min{τ̃ (n)

1 , t+n2(T − t)}). (EC.54)

As n→∞, 1
τ̃

(n)
1 <min{τ̃(n)

2 ,n2(T−t)+t}→ 1
τ̃

(∞)
1 <τ̃

(∞)
2

in distribution, where

dW̃ t,y,∞
s /W̃ t,y,∞

s =σdBs, s≥ t, (EC.55)

then

lim
n→+∞

P(τ̃
(n)
1 <min{τ̃ (n)

2 , n2(T − t) + t}) = λ,

lim
n→+∞

P(τ̃
(n)
2 <min{τ̃ (n)

1 , n2(T − t) + t}) = 1−λ.

By (EC.53) and (EC.54), we prove (EC.50) and (EC.51).

Now, take the following strategy

π(n)
s =

{
n, t≤ s≤ τ (n)

1 ∧ τ (n)
2 ∧T, if u= +∞,

0, otherwise,

then

V (t, λw1 + (1−λ)w2)≥ limsup
n→∞

E[W t,w,π(n)

T ]≥ λU(w1) + (1−λ)U(w2).

That is, we prove (EC.49) for the case u= +∞. For the case d=−∞, replacing n by −n yields

the desired result. �

Lemma EC.2.3. Consider a concave function f(w) on B ≤ w < +∞, which satisfies

lim
w→+∞

f(w)

wp
= 0 for some 0< p < 1. Then for a fixed point w0 ≥B and a fixed number ε > 0, there

exists a function of type

f1(w) =C1w
q +C2, p≤ q < 1.

s.t. f1(w)≥ f(w), ∀w≥B, and f1(w0)≤ f(w0) + ε.
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Proof of Lemma EC.2.3: First, since f is concave, there exists a tangent line h(w) of this

function, s.t. h(w) has a finite positive slope, h(w)≥ f(w), and h(w0)≤ f(w0) + ε
2
. What’s more,

assume f(w)≤ h(n)−h(B)

np
wp +h(B)≤ h(w) when w≥ n.

Now choose C2 = h(B) and C1 = h(n)−h(B)

nq
, and let f1(w) = C1w

q + C2. For any p ≤ q < 1, we

have f1(B) = h(B)≥ f(B) and f1(n) = h(n)≥ f(n). By the concavity of f1, we have f1 ≥ h≥ f in

[0, n], and f1(w)≥ h(n)−h(B)

np
wp +h(B)≥ f(w) when w≥ n. That is, f1(w)≥ f(w), ∀w≥B.

Sending q→ 1− gives f1(w0)→ h(w0). Thus, there exists q ∈ [p,1), such that f1(w0)≤ f(w0) + ε.

�

Proof of Proposition EC.2.3(ii): First, we show that V (t,w) ≥ Û(w) for all t < T,w ≥ B. If

not, by Lemma EC.2.2, there exists an ε > 0, s.t.

Û(w)≥ V (t,w) + ε≥ λU(w1) + (1−λ)U(w2) + ε, ∀ λw1 + (1−λ)w2 =w, λ∈ (0,1).

While the region between Û and f ≡U(B) is the smallest convex hull of

{(F,w)|U(B)≤ F ≤U(w),B ≤w<+∞}.

By the separation theorem of convex sets, Û(w) has a positive distance from this convex hull,

which leads to a contradiction. Then we have

lim inf
(t,ζ)→(T−,w)

V (t, ζ)≥ Û(w).

For the other side inequality, consider the case with utility f1(w) =C1w
q +C2 given by Lemma

EC.2.3. By Lemma EC.1.1, it has a classical solution V1(t, ζ) which is continuous at the terminal

time T . Then for any ε > 0,

limsup
(t,ζ)→(T−,w)

V (t, ζ)≤ limsup
(t,ζ)→(T−,w)

V1(t, ζ) = f1(w)≤ Û(w) + ε.

Thus, part (ii) of Proposition EC.2.3 is proved by sending ε→ 0. �

The verification of Condition c) is now finished.

Appendix EC.3: Proof of Theorem 3.3

The HJB equation of our non-concave utility maximization problem may involve unbounded wealth

level, unbounded portfolio constraints, and discontinuous utility function. In this section, we first

present three lemmas to show that the value function of the original problem can be approximated

by the value function under the case that the wealth processes are controlled in a bounded domain,

the portfolio set is bounded, and the utility function is continuous. Then, we only need to prove

the convergence of the numerical algorithm for the case that the wealth processes are controlled in

a bounded domain, the portfolio set is bounded, and the utility function is continuous.
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The first lemma shows that the portfolio optimization problem with unbounded wealth processes

allowed can be approximated by the problem with bounded wealth processes restriction. To prepare

the lemma, for any A > 0, define UA(w) = U(w) for w ≤ A and UA(w) = U(A) for w > A, and

ÛA(w) = Û(w) for w≤A and ÛA(w) = Û(A) for w>A, where Û is the concave envelope of U .

Lemma EC.3.1. For any A> 0, denote VA as the value function under the utility UA (ÛA) when

the portfolio set [d,u] is bounded (unbounded). Then, we have

lim
A→∞

VA(t,w) = V (t,w). (EC.56)

Proof of Lemma EC.3.1: Denote by W t,w,π
s the wealth process Ws starting from Wt = x under

the portfolio π. When the portfolio set [d,u] is bounded,

|VA(t,w)−V (t,w)|=
∣∣∣∣ sup
d≤π≤u

E[UA(W t,w,π
T )]− sup

d≤π≤u
E[U(W t,w,π

T )]

∣∣∣∣
≤ sup

d≤π≤u
E[
∣∣UA(W t,w,π

T )−U(W t,w,π
T )

∣∣]
= sup

d≤π≤u
E[
∣∣U(A)−U(W t,w,π

T )
∣∣1{W t,w,π

T
>A}].

First, we show that (EC.56) holds when U is bounded by a finite constant M . In this case, by

Chebyshev inequality,

|VA(t,w)−V (t,w)| ≤ 2M sup
d≤π≤u

P [W t,w,π
T >A] = 2M sup

d≤π≤u
P [(W t,w,π

T )q >Aq]

≤ 2M sup
d≤π≤u

E[(W t,w,π
T )q]/Aq ≤ 2MQ(q)(t,w)/Aq→ 0 as A→∞,

where 0< q < 1, and Q(q)(t,w) is given by (EC.3) in Lemma EC.1.1 which is finite.

Second, we show that (EC.56) holds when U is unbounded. In this case, since U is increasing,

we have

|VA(t,w)−V (t,w)| ≤ 2 sup
d≤π≤u

E[|U(W t,w,π
T )|1{W t,w,π

T
>A}]

= 2U(A) sup
d≤π≤u

E[U(W t,w,π
T )/U(A)1{U(W

t,w,π
T

)>U(A)}]

≤ 2U(A) sup
d≤π≤u

E[(U(W t,w,π
T )/U(A))q1{U(W

t,w,π
T

)>U(A)}]

≤ 2 sup
d≤π≤u

E[max{0,U(W t,w,π
T )q}]/(U(A))q−1

≤ 2 sup
d≤π≤u

Q(pq)(t,w)/(U(A))q−1→ 0 as A→∞,

where q > 1 is chosen such that pq < 1 and Q(pq)(t,w) is given by (EC.3). The last inequality holds

since (U(w))q is bounded from above by wpq for large w. Thus, limA→∞ VA(t,w) = V (t,w). The

proof for the case that [d,u] is unbounded is similar. �
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The second lemma shows that the unbounded portfolio constraint problem can be approximated

by a bounded constraint problem under the concave envelope of the utility function.

Lemma EC.3.2. If the portfolio set [d,u] is unbounded, for any C > 0, let V C(t,w) denote the

value function of the optimization problem with portfolio constraint π ∈ [−C,C]∩ [d,u] under the

utility Û , the concave envelope of U . Then, we have

lim
C→+∞

V C(t,w) = V (t,w).

Proof of Lemma EC.3.2: It is obvious that

limsup
C→+∞

V C(t,w)≤ V (t,w).

On the other side, given any strategy π, note that in order to well define the wealth process, we

have (see. e.g., Definition 1.2.1 of Karatzas and Shreve, 1998),∫ T

t

|πsη|ds <+∞, and

∫ T

t

(πsσ)2ds <+∞, almost surely.

For each C > 0, define π(C)
s = πs1{−C≤πs≤C}, t≤ s≤ T . Then, there exists a subsequence Cn, such

that Cn→∞ as n→∞, and (see. e.g., Problem 3.2.27 and its proof in Karatzas and Shreve, 1991),∫ T

t

π(Cn)
s ηds→

∫ T

t

πsηds as n→∞, almost surely,∫ T

t

π(Cn)
s σdBs→

∫ T

t

πsσdBs as n→∞, almost surely.

Let W t,w,π
s denote the wealth Ws starting from Wt = x under the portfolio π. Recalling (2), we

have W t,w,π(Cn)

T →W t,w,π
T as n→∞ almost surely. By the dominated convergence theorem (the

expectation is finite when the problem is well defined), we have

limsup
n→+∞

E[Û(W t,w,π(Cn)

T )] =E[limsup
n→+∞

Û(W t,w,π(Cn)

T )] =E[Û(W t,w,π
T )]. (EC.57)

For any π ∈ [d,u] ,

limsup
C→+∞

V C(t,w)≥ limsup
n→+∞

sup
d≤π≤u

E[Û(W t,w,π(Cn)

T )] = limsup
n→+∞

E[Û(W t,w,π(Cn)

T )].

Thus, by (EC.57),

limsup
C→+∞

V C(t,w)≥ sup
d≤π≤u

limsup
n→+∞

E[Û(W t,w,π(Cn)

T )] = sup
d≤π≤u

E[Û(W t,w,π
T )] = V (t,w).

Noting that V C is increasing in C, the lemma is proved. �

The third lemma shows that when the portfolio set [d,u] is bounded, the value function associ-

ated with a discontinuous utility can be approximated by a value function associated with some

continuous utility that approximates the discontinuous utility.
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Lemma EC.3.3. There exist an increasing sequence of continuous function Ud,k and a decreasing

sequence of continuous function Uu,k, such that for any k > 0, U(w − 1
k
) ≤ Ud,k(w) ≤ U(w) and

U(w) ≤ Uu,k(w) ≤ U(w + 1
k
) for all w ≥ B. When the portfolio set [d,u] is bounded, let Vu,k and

Vd,k be the value function associated with the utility Uu,k and Ud,k, respectively. Then, we have

V (t,w) = lim
k→∞

Vd,k(t,w) = lim
k→∞

Vu,k(t,w), t < T.

Proof of Lemma EC.3.3: For each k > 0, we can use the classical convolution method to

construct continuous utility functions Uu,k and Ud,k. Consider a function φ, s.t. φ is nonnegative,

supported on [−1,1], φ∈C∞R , and
∫ 1

−1
φ(x)dx= 1. Then

Uu,k(w) :=

∫ ∞
−∞

2kφ(2kζ) ∗U(w+
1

2k
− ζ)dζ,

is what we need. Replacing U(w+ 1
2k
− ζ) by U(w− 1

2k
− ζ), we get Ud,k.

Firstly, it is obvious that Vd,k and Vu,k are monotonic, and Vd,k ≤ V ≤ Vu,k for any k.

Next we show that for any δ > 0 and t < T − δ,

lim
k→∞

Vd,k(t,w)≥ V (t+ δ,w). (EC.58)

To see this, let W t,w,π
s denote the wealth Ws starting from Wt = x under the portfolio π, and note

that

Vd,k(t,w) = sup
d≤π≤u

E[Ud,k(W
t,w,π̃
T )] = sup

d≤π≤u
E[Ud,k(W

t+δ,w,π̃
T+δ )]. (EC.59)

For any admissible strategy πs, t+δ≤ s≤ T , let π̃t = πs for t+δ≤ s≤ T , and π̃t = l for s > T ,where

l= u if u>−d and l= d if u≤−d. Define τk := inf{s≥ T |W t+δ,w,π̃
s ≥W t+δ,w,π̃

T + 1
k
} and a strategy

π̃kt as following:

π̃ks =

πs, t+ δ≤ s≤ T,
l, T < s≤ τk,
0, τk < s≤ T + δ.

Due to the local oscillation of Brownian Motion and strict positiveness of XT , we have lim
k→+∞

τk→ T ,

a.s., which means lim inf
k→+∞

Ud,k(W
t+δ,w,π̃k

T+δ )≥U(W t+δ,w,π
T ), a.s. So by Fatou’s lemma,

lim inf
k→+∞

E[Ud,k(W
t+δ,w,π̃k

T+δ )]≥E[U(W t+δ,w,π
T )],

then, by(EC.59),

Vd,k(t,w) = sup
d≤π≤u

E[Ud,k(W
t+δ,w,π̃
T+δ )]≥ sup

d≤π≤u
E[Ud,k(W

t+δ,w,π̃k

T+δ )]

≥ sup
d≤π≤u

lim inf
k→+∞

E[Ud,k(W
t+δ,w,π̃k

T+δ )]≥ sup
d≤π≤u

E[U(W t+δ,w,π
T )] = V (t+ δ,w),
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that is, (EC.58) holds.

Recall that V is continuous when t < T by Theorem 3.2. Sending δ→ 0, we have lim
k→∞

Vd,k(t,w)≥

V (t,w), for t < T . The converse inequality holds since Ud,k ≤U . Thus, we have proved the part for

Vd,k. And the part for Vu,k follows by similar arguments. �

With the help of Lemmas EC.3.1, EC.3.2 and EC.3.3, we now prove Theorem 3.3.

Proof of Theorem 3.3: By Lemmas EC.3.1, EC.3.2 and EC.3.3, we only need to consider the

case that the portfolio set [d,u] is bounded, the diffusions are controlled in a bounded domain

[B,A] for a big enough upper bounded A, and the utility function U is continuous.

Let Σ∆ = {(tn,wi) : 0≤ n≤Nt,0≤ i≤Nw} be a discretization mesh of the domain [0, T ]× [B,A]

with fixed time and spatial step sizes ∆t and ∆w. Let V n
i be the solution at grid (tn,wi) of a

monotone, stable, and consistent finite difference scheme for the HJB equation (17) with terminal

and boundary conditions (34) and (33). If the discretization solution V n
i assumes the terminal and

boundary conditions uniformly, that is,

lim
(tn,wi)→(T−,w)

∆t→0,∆w→0

V n
i =U(w), (EC.60)

and

lim
(tn,wi)→(t,B)
∆t→0,∆w→0

V n
i =U(B), and lim

(tn,wi)→(t,A)
∆t→0,∆w→0

V n
i =U(A), (EC.61)

then with the help of the Comparison Principle, by Theorem 2.1 of Barles and Souganidis (1991),

the solution of the finite difference scheme converges to the unique viscosity solution, that is, the

value function of our problem.

To finish the proof, we show that the discretization solution V n
i assumes the terminal and

boundary conditions (EC.60) and (EC.61). The convergence property (EC.60) is proved by Lemma

IX.5.3 of Fleming and Soner (2006). Thus, we only need to show that the discretization solution

V n
i assumes the boundary conditions (EC.61).

First, we show that

limsup
(tn,wi)→(t,B)
∆t→0,∆w→0

V n
i ≤U(B), and limsup

(tn,wi)→(t,A)
∆t→0,∆w→0

V n
i ≤U(A). (EC.62)

Let V be the value function of the unconstrained portfolio optimization problem with the utility Û ,

the concave envelope of U in the bounded domain [B,A], and the boundary conditions V (t,B) =

U(B) and V (t,A) =U(A). By Theorem 4.2 of Bian, Chen and Xu (2019), V is the unique classical

solution to the associated HJB equation, continuous at the boundaries and the terminal time. Then,
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V is a classical supersulution of the original constraint problem. By Lemma IX.5.2 of Fleming and

Soner (2006), we have that, for every a> 0, there exists h0 > 0, such that, for ∆w<h0,

V n
i ≤ V (tn,wi) + a, for all n, i,

By the continuity of V , we have

limsup
(tn,wi)→(t,B)
∆t→0,∆w→0

V n
i ≤ limsup

(tn,wi)→(t,B)
∆t→0,∆w→0

V (tn,wi) + a= V (t,B) + a=U(B) + a,

and

limsup
(tn,wi)→(t,A)
∆t→0,∆w→0

V n
i ≤ limsup

(tn,wi)→(t,A)
∆t→0,∆w→0

V (tn,wi) + a= V (t,A) + a=U(A) + a.

By the arbitrariness of a, we get (EC.62).

Second, we show that

lim inf
(tn,wi)→(t,B)
∆t→0,∆w→0

V n
i ≥U(B), and lim inf

(tn,wi)→(t,A)
∆t→0,∆w→0

V n
i ≥U(A). (EC.63)

The constant U(B) is a discrete subsolution, by Lemma IX.4.2 of Fleming and Soner (2006) or

Theorem 5.2 of Forsyth and Labahn (2007), we have V n
i ≥ U(B) for all n, i. So, we get the first

inequality of (EC.63). For the second inequality of (EC.63), by the discretization version of the

HJB equation (17), we have V n
i ≥ V n+1

i for all n, i 7. Then by recursion, V n
i ≥ V

Nt
i =U(wi) for all

n, i. By the continuity of U , we have

lim inf
(tn,wi)→(t,A)
∆t→0,∆w→0

V n
i ≥ lim inf

(tn,wi)→(t,A)
∆t→0,∆w→0

U(wi) =U(A).

So, we get the secnd inequality of (EC.63). �

At the end of this section, we show that the the finite difference scheme given in Appendix B is

monotone, stable, and consistent. Then, by Theorem 3.3, the discretization solution of the scheme

will converge to the value function of our problem. By Lemmas EC.3.1 and EC.3.2, we only need

to consider the case that the portfolio set [d,u] is bounded and the state variable are in a bounded

domain, that is, w ∈ [B,A] for a bounded A> 0.

7 For example, by the discretization equation (32), we have

V ni = V n+1
i + ∆t ∗ sup

d≤π≤u

{
π2w2

i σ
2

2

V ni+1− 2V ni +V ni−1

(∆w)2
+πwiη

∆V ni (π)

∆w

}
≥ V n+1

i .
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Lemma EC.3.4. Assume that the portfolio set [d,u] is bounded. B is the lower liquidation bound-

ary, and let A>B be a finite cutoff, such that the wealth level is restricted in the bounded domain

[B,A]. The finite difference scheme (32-35) given in Appendix B is monotone, stable, and consistent

( cf. Barles and Souganidis(1991) for the definition of monotonicity, stability and consistence.)

Proof of Lemma EC.3.4: Denote the left hand side of the discretization HJB equation (32) as

S
(
(∆t,∆w), (tn,wi), V

n
i ,{V n

i−1, V
n
i+1, V

n+1
i }

)
. (EC.64)

First, S can be rewritten as (cf. (32) and (35))

− V
n+1
i −V n

i

∆t
− sup
d≤π≤u

{
αi(π)V n

i−1− (αi(π) +βi(π))V n
i +βi(π)V n

i+1

}
, (EC.65)

where αi(π) and βi(π) are defined for d≤ π≤ u as following:
αi(π) =

π2w2
i σ

2

2(∆w)2
− πwiη

2∆w
, βi(π) =

π2w2
i σ

2

2(∆w)2
+ πwiη

2∆w
, if |π| ≥ πi;

αi(π) =
π2w2

i σ
2

2(∆w)2
, βi(π) =

π2w2
i σ

2

2(∆w)2
+ πwiη

∆w
, if |π|<πi and πη > 0;

αi(π) =
π2w2

i σ
2

2(∆w)2
− πwiη

∆w
, βi(π) =

π2w2
i σ

2

2(∆w)2
, if |π|<πi and πη < 0,

(EC.66)

and πi = |η|∆w/(σ2wi).

First, we prove the monotonicity. Note that wi > 0 and ∆w> 0. By definition, we have

αi(π)≥ 0, and βi(π)≥ 0, for all d≤ π≤ u. (EC.67)

Then, S is non-increasing with respective to V n
i−1, V

n
i+1 and V n+1

i , so the scheme S is monotone.

Second, we prove the consistence. For a smooth function φ, by Taylor expansion (cf. the left

hand side of (32)),

S ((∆t,∆w), (t,w), φ(t,w) + ξ,{φ(t,w−∆w) + ξ,φ(t,w+ ∆w) + ξ,φ(t+ ∆t,w) + ξ})

=S ((∆t,∆w), (t,w), φ(t,w),{φ(t,w−∆w), φ(t,w+ ∆w), φ(t+ ∆t,w)})

=−
(
∂φ(t,w)

∂t
+ o(∆t)

)
− sup
d≤π≤u

{
wηπ

(
∂φ(t,w)

∂w
+ o(∆w)

)
+
w2σ2π2

2

(
∂2φ(t,w)

∂w2
+ o((∆w)2)

)}
.

=−
(
∂φ(t,w)

∂t
+ o(∆t)

)
−H

(
w,
∂φ(t,w)

∂w
+ o(∆w),

∂2φ(t,w)

∂w2
+ o((∆w)2)

)
,

where H is the Hamiltonian defined in (24). H is continuous since the portfolio set [d,u] is bounded.

Then

lim
∆t→0,∆w→0

S ((∆t,∆w), (t,w), φ(t,w) + ξ,{φ(t,w−∆w) + ξ,φ(t,w+ ∆w) + ξ,φ(t+ ∆t,w) + ξ})

=− ∂φ(t,w)

∂t
−H

(
w,
∂φ(t,w)

∂w
,
∂2φ(t,w)

∂w2

)
.

So, the scheme S is consistent.



e-companion to Author: Non-Concave Utility Maximization ec23

Third, we prove the stability. Let πni be the optimal of (EC.65). Recalling (EC.67), for i =

2, . . . ,Nw− 1, by (EC.65), we have

|V n
i |(1 + ∆t(αi(π

n
i ) +βi(π

n
i ))) =|V n+1

i + ∆t(αi(π
n
i )V n

i−1 +βi(π
n
i )V n

i+1))|

≤||V n+1||∞+ ∆t(αi(π
n
i ) +βi(π

n
i ))max{||V n||∞,C},

where ||V n||∞ = max{|V n
2 |, . . . , |V n

Nw−1|} and C = max{|U(B)|, |U(A)|}. Let i ∈ {2, . . . ,Nw − 1} be

choose such that |V n
i |= ||V n||∞. Then

||V n||∞(1 + ∆t(αi(π
n
i ) +βi(π

n
i )))≤||V n+1||∞+ ∆t(αi(π

n
i ) +βi(π

n
i ))max{||V n||∞,C}.

It follows that ||V n||∞ ≤ ||V n+1||∞ if ||V n||∞ ≥ C, otherwise, ||V n||∞ is bounded by the convex

combination of ||V n+1||∞ and C. So, for n= 0,1, . . . ,Nt− 1, we have,

||V n||∞ ≤max{||V n+1||∞,C}.

Then,

||V n||∞ ≤max{max{||V n+2||∞,C},C}= max{||V n+2||∞,C} ≤ · · · ≤max{||V Nt ||∞,C}=C,

where the last equality holds by the terminal condition (34). So, the scheme S is stable. �

Appendix EC.4: Additional Numerical Results

In Figure EC.1, we plot the time 0 value functions against wealth level for the constrained case

(no-short-selling and no-borrowing: π ∈ [0,1]) and unconstrained case, respectively, for the models

of Berkelaar, Kouwenberg and Post (2004), Carpenter (2000), Basak, Pavlova, and Shapiro (2007),

and He and Kou (2018). The dashed line stands for the value function without portfolio constraints,

which is globally concave. The dotted line is the value function with bounded portfolio constraints,

which turns out to be locally convex and locally concave.

In Figures EC.2-EC.5, we plot the time 0 optimal fraction of total wealth invested in the stock π∗

against wealth level for the constrained case and the unconstrained strategy, respectively, for the

models of Berkelaar, Kouwenberg and Post (2004), Carpenter (2000), Basak, Pavlova, and Shapiro

(2007), and He and Kou (2018). The dotted (dashed) line represents the optimal strategy for the

constrained (unconstrained) case. In each figure, the portfolio constraints for the constrained case

are π ∈ [0,1] for the upper panel and π ∈ [−2,1] for the lower panel, respectively. These figures

show that the non-myopic and the gambling properties of the optimal strategy are common for

non-concave optimization problems with bounded portfolio constraints.
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(d): Traditional Compensation Scheme
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Figure EC.1 A comparison between the constrained value function and the unconstrained value function. In all

models, the value function is globally concave in the unconstrained case but is not concave in the constrained

case. The dotted (dashed) line is the time 0 value function against wealth level with (without) portfolio

constraints. The portfolio constraints in the constrained case are no-borrowing and no-short-sale, i.e., π ∈ [0,1].

The five panels (a)-(e) correspond to the models of Berkelaar, Kouwenberg and Post (2004), Carpenter (2000),

Basak, Pavlova, and Shapiro (2007), He and Kou (2018) (the traditional scheme) and He and Kou (2018) (the

first-loss scheme). A compulsory liquidation at w= 0.5 is imposed.
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Figure EC.3 A comparison between the constrained strategy and the unconstrained strategy for the

non-concave utility optimization problem discussed in Carpenter (2000). The upper panel indicates that the

constrained investors are non-myopic with respect to portfolio constraints such that an early action is made

before portfolio constraints being binding. The lower panel indicates that given a relatively large loss, short-selling

is likely optimal even with a positive risk premium, provided that a large short-selling ratio (d=−2) is permitted.

The dotted (dashed) line is the time 0 optimal fraction of total wealth invested in the stock π∗ against wealth

level for the constrained (unconstrained) case. The portfolio constraints in the constrained case are π ∈ [0,1]

(upper panel) and π ∈ [−2,1] (lower panel), respectively. The parameter values are: r= 0.03, µ= 0.07, σ= 0.3,

p= 0.5, K = 1, α= 0.2, C = 0.02, W0 = 1, T = 1, T − t= 1/12, B = 0.5.
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Figure EC.4 A comparison between the constrained strategy and the unconstrained strategy for the

non-concave utility optimization problem discussed in Basak, Pavlova, and Shapiro (2007). The upper panel

indicates that the constrained investors are non-myopic with respect to portfolio constraints such that an early

action is made before portfolio constraints being binding. The lower panel indicates that given a relatively large

loss, short-selling is likely optimal even with a positive risk premium, provided that a large short-selling ratio

(d=−2) is permitted. The dotted (dashed) line is the time 0 optimal fraction of total wealth invested in the

stock π∗ against wealth level for the constrained (unconstrained) case. The portfolio constraints in the

constrained case are π ∈ [0,1] (upper panel) and π ∈ [−2,1] (lower panel), respectively. The parameter values are:

r= 0.03, µ= 0.07, σ= 0.3, p= 0.5, ηL =−0.08, ηH = 0.08, fL = 0.8, fH = 1.5, W0 = 1, T = 1/12, B = 0.5.
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Figure EC.5 A comparison between the constrained strategy and the unconstrained strategy for the

non-concave utility optimization problem discussed in He and Kou (2018) for the traditional scheme (the left

column: γ = 0.1, α= 0.2) and the first-loss scheme (the right column: γ = 0.1, α= 0.3). The upper panel indicates

that the constrained investors are non-myopic with respect to portfolio constraints such that an early action is

made before portfolio constraints being binding. The lower panel indicates that given a relatively large loss,

short-selling is likely optimal even with a positive risk premium, provided that a large short-selling ratio (d=−2)

is permitted. The dotted (dashed) line is the time 0 optimal fraction of total wealth invested in the stock π∗

against wealth level for the constrained (unconstrained) case. The portfolio constraints in the constrained case

are π ∈ [0,1] (upper panel) and π ∈ [−2,1] (lower panel), respectively. The other parameter values are: r= 0.03,

µ= 0.07, σ= 0.3, p= 0.5, λ= 2.25, W0 = 1, T = 1/12, B = 0.5.
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