
NUS Risk Management Institute 
21 HENG MUI KENG TERRACE, #04-03 I3 BUILDING, SINGAPORE 119613 

www.rmi.nus.edu.sg/research/rmi-working-paper-series 

NUS RMI Working Paper Series – No. 2019-11 
Modeling Large Societies: Why 

Countable Additivity Is Necessary 

 

M. Ali KHAN, Lei QIAO, Kali P. RATH and 
Yeneng SUN 

29 December 2019 

 

http://www.rmi.nus.edu.sg/research/rmi-working-paper-series


Modeling Large Societies:

Why Countable Additivity Is Necessary∗

M. Ali Khan†, Lei Qiao‡, Kali P. Rath§ and Yeneng Sun¶

This version: December 29, 2019

Abstract: The economic literature with a measure space of agents is enormous, where one
usually works with an atomless countably additive measure space to model the interaction
of agents in a large society. However, there have been a number of attempts to drop the
countable additivity assumption by working with a finitely (but non-countably) additive
measure space (such as the set of natural numbers with a density charge). The main purpose
of this paper is to illustrate the necessity of countable additivity in modeling a large society in
terms of existence of equilibrium and its idealized limit property in both general equilibrium
and game theory. In addition, we point out that in the setting of atomless finitely additive
agent spaces, even approximate equilibria may not exist in general, but do so only with
additional assumptions.

Keywords: Measure space, countable additivity, finite additivity, competitive equilibrium,
Nash equilibrium, existence of equilibrium, idealized limit property, approximate competitive
equilibrium, approximate Nash equilibrium.

JEL Classification Numbers: C62; D50; D82; G13.

∗Earlier versions of this paper were presented at various places with different titles: “The Nonexistence
of Mixed-strategy Nash Equilibria for a Countable Agent Space” at the 12th SAET Conference, Brisbane,
Australia, June–July 2012, and at the Conference Mathematical Economics–Theory and Language, Balti-
more, USA, May 2013; “General Equilibrium Theory on a Finitely-Additive Measure Space of Agents: A
Viable Option?” at the 15th SAET Conference, Cambridge, United Kingdom, July 2015; “Nonexistence
of Nash Equilibria in Games Over Finitely Additive Measure Spaces” at the 11th World Congress of the
Econometric Society, Montreal, Canada, August 2015; “The Necessity of Countable Additivity in Model-
ing Infinitely Many Agents” at the Asian Meeting of the Econometric Society, Hong Kong, China, June
2017, and at the 8th Shanghai Microeconomics Workshop, Shanghai, China, June 2017; “Modeling Infinitely
Many Agents: Why Countable Additivity Is Necessary” at theory seminars at Johns Hopkins University
and Rutgers University, USA, April 2018, and at the Workshop on Game Theory, Singapore, June 2018;
and “Approximate Equilibria in Games and Economies over Finitely Additive Measure Spaces” at the 19th
SAET Conference, Ischia, Italy, June–July 2019. We are grateful to the participants and to Darrell Duffie,
Faruk Gül, Martin Hellwig, Richard P. McLean, Maxwell B. Stinchcombe, Walter Trockel and Rajiv Vohra
for helpful comments and stimulating conversations.
†Department of Economics, The Johns Hopkins University, Baltimore, MD 21218, USA. e-mail:

akhan@jhu.edu
‡School of Economics, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai

200433, China. e-mail: qiao.lei@mail.shufe.edu.cn
§Department of Economics, University of Notre Dame, Notre Dame, IN 46556, USA. e-mail:

rath.1@nd.edu
¶Risk Management Institute and Department of Economics, National University of Singapore, 21 Heng

Mui Keng Terrace, Singapore 119613. e-mail: ynsun@nus.edu.sg



Contents

1 Introduction 3

2 Mathematical Preliminaries 6

3 Economies, Games and Equilibria 7

3.1 Economies and competitive equilibria . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Games and Nash equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Idealized Limit Property 11

4.1 Large economies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Large games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Necessity of Countable Additivity 15

6 Conclusion 16

A Proofs of Theorems 1 and 2 19

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Approximate Equilibria 29

B.1 Nonexistence of approximate equilibria . . . . . . . . . . . . . . . . . . . . . 30

B.2 Existence of approximate equilibria under additional assumptions . . . . . . 31

B.3 The proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.3.1 Proof of Claim 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.3.2 Proof of Claim 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.3.3 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.3.4 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 43

2



1 Introduction

A vast literature in economics is based on the interaction of agents in a large society (of-

ten called a continuum of agents). The standard mathematical set-up involves an atomless

countably additive measure space of agents with the Lebesgue unit interval as the archetype

agent space.1 However, there have been a number of attempts to relax the countable ad-

ditivity assumption to finite additivity2 so that one could work with an atomless finitely

additive measure space of agents such as the countable set of natural numbers with a den-

sity charge.3 The aim of this paper is to demonstrate some fundamental problems that arise

in the modeling large societies via finitely (but non-countably) additive measure spaces.

An atomless measure space of agents is introduced as an idealized limit model for the

interaction of a large but finitely many economic agents. A bare minimal consistency re-

quirement would be that such an idealized model possesses an equilibrium and captures the

limiting behavior of some corresponding large finite models. This paper examines the va-

lidity of these two properties for models with a finitely additive agent space in the simplest

settings of economies and games with many agents.

First, we consider the existence issue. When a finite-agent economy satisfies the usual

conditions such as continuity, convexity and monotonicity, it is well-known that competitive

equilibria exist in the economy.4 However, if a finite-agent space is replaced by an agent

space based on the set of natural numbers with a density charge, Example 1 below shows the

nonexistence of a competitive equilibrium for an economy satisfying those usual conditions.

In the setting of non-cooperative games with finitely many agents, it is again a standard

result that mixed strategy Nash equilibrium exists. However, when one works with an agent

1For some classical references, see, for example, Milnor and Shapley (1961), Aumann (1964) and Hilden-
brand (1974).

2See, for example, Brown (1974), Weiss (1981), Armstrong and Richter (1984), Feldman and Gilles (1985,
Subsection IIC), Hammond (1999, Footnote 2), and the many references quoted in Footnote 18 below.

3Let N be the set of positive integers and P(N) its power set. A finitely additive measure µ on P(N) is

said to be a density charge if for any A ∈ P(N), µ(A) = limn→∞
|{1,...,n}∩A|

n whenever the limit exists, where
|{1, . . . , n} ∩ A| is the number of elements in the set {1, . . . , n} ∩ A. That is, µ extends the usual notion of
asymptotic density.

4More general existence results can be found in Arrow and Debreu (1954) and McKenzie (1954), and the
rich literature that follows them.
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space based on the set of natural numbers with a density charge as in Example 1, Example 2

presents a game with continuous payoff functions without any mixed strategy Nash equilibria.

Hildenbrand (1970, p. 162) pointed out that the relevance of “ideal economies” with

infinitely many agents to finite-agent economies has to be established because the interest

in the ideal model depends on its link with the large but finite case. The simplest way to

link a sequence of economies with large but finitely many agents to an atomless economy

is: (1) to take a sequence of equal partitions of the atomless agent space corresponding to

the sequence of agent numbers, (2) for each finite-agent economy and the corresponding

partition, the agents in the partition sets replicate the agents’ characteristics in the finite-

agent economy, and (3) the replicated sequence of characteristics converge pointwise to the

atomless economy.5 For a sequence of competitive equilibria corresponding to the sequence

of finite-agent economies, one can also produce a sequence of allocations for the atomless

economy by replicating agents’ consumptions in the finite-agent economies as in (2). If

the replicated sequence of allocations for the atomless economy converge pointwise to an

allocation, it seems to be a minimal requirement for the “ideal” atomless economy to retain

the equilibrium property for the limit allocation. We call this requirement the idealized limit

property.6

Next, we consider the idealized limit property of finitely additive agent spaces. It is

surprising that such a simple property fails when the set of natural numbers with a den-

sity charge is taken to be the agent space. In particular, Example 3 presents a sequence

of finite-agent economies with continuous, concave and monotone utility functions and a

corresponding sequence of competitive equilibria which respectively converge pointwise to

a limit economy and a limit allocation; however, the limit allocation is not a competitive

equilibrium of the limit economy. Example 4 demonstrates the failure of the idealized limit

property also in the setting of games with countably many agents and continuous payoffs.

In sum, Examples 1, 2, 3 and 4 consider an agent space based on the set of natural

numbers with a density charge for both economies and games. The next question to ask is

5See, for example, Hildenbrand (1974, p. 139) for such procedural replications.
6See Definition 4 below for the details.
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what happens if one works with other types of finitely additive measure spaces of agents.

Theorem 1 and Theorem 2 below respectively show that for economies and games with

finitely additive measure spaces of agents to have either equilibria or the idealized limit

property, the countable additivity condition for the underlying measure spaces is not only

sufficient but also necessary.

Given that an exact equilibrium may not exist on an atomless finitely additive agent space,

we consider in Appendix B the natural question as to whether an approximate equilibrium

exists in the setting. Since an atomless finitely additive agent space can be decomposed

into finitely many subspaces of agents with an arbitrary small size, and that exact equilibria

exist in the finite-agent settings,7 one expects that approximate equilibria should exist in

an atomless setting. However, it is again rather surprising that approximate equilibria do

not exist in general! Examples 5 and 6 respectively establish this for economies and games

with countably many agents and continuous payoffs. Propositions 1 and 2 do establish the

existence of approximate equilibria under further assumptions.

The paper is organized as follows. Section 2 includes some mathematical preliminaries.

In Section 3, we present examples to show the nonexistence of a competitive and a Nash

equilibriium in well-behaved economies and games. Section 4 demonstrates the failure of the

idealized limit property of competitive equilibria and Nash equilibria when the underlying

agent space is the set of natural numbers with a density charge. Section 5 shows the necessity

and sufficiency of countable additivity in terms of both the existence of equilibria and the

idealized limit property for both economies and games. Section 6 discusses the literature and

concludes the paper. The proofs of the main results are given in Appendix A. The existence

issue of approximate equilibria is considered in Appendix B.

7In fact, it is easy to show that an equilibrium exists in an economy, or in a game with an atomless finitely
additive agent space if there are only finitely many different characteristics for all the agents; see Lemmas 1
and 2 in Appendix B below.
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2 Mathematical Preliminaries

Let T be a nonempty set and T a σ-algebra of subsets of T . Since T will be used to model the

space of agents in this paper, we assume {t} ∈ T for any t ∈ T to allow for the measurability

of a single agent. When T is the set of positive integers N, its σ-algebra is the power set

P(N). A set function µ from T to [0, 1] with µ(T ) = 1 is said to be a finitely additive

measure on T if for any A,B ∈ T with A ∩ B = ∅, µ(A ∪ B) = µ(A) + µ(B). The measure

µ is said to be countably additive if for any sequence {An}∞n=1 of pairwise disjoint sets in T ,

µ(∪∞n=1An) =
∑∞

n=1 µ(An). A finitely additive measure µ is atomless if for every ε > 0, there

exists a T -measurable partition {F1, . . . , Fn} of T such that µ(Fi) < ε for every i.8 The

triple (T, T , µ) will be called a finitely (respectively, countably) additive measure space if µ

is a finitely (respectively, countably) additive measure.9

A function f from T to a separable, metric space X is measurable if for any Borel set B

in X, f−1(B) = {t ∈ T : f(t) ∈ B} is in T . For a real valued measurable function on a

finitely additive measure space, the integral is as developed in Bhaskara Rao and Bhaskara

Rao (1983, Ch. 4).10 When the underlying measure is countably additive, this notion of

integrability is equivalent to the standard definition of integrability as in Loeb (2016, Ch. 6).

For a function taking values in the L-dimensional Euclidean space RL, the integral is the

vector whose components are integrals of the component functions.

8When µ is countably additive, this definition of µ being atomless is equivalent to the more conventional
definition that for any A ∈ T with µ(A) > 0, there exists a B ∈ T with B ⊆ A and 0 < µ(B) < µ(A).

9Note that a finitely additive measure on an algebra F of subsets of T can always be extended to a finitely
additive measure on the σ-algebra generated by F ; see Bhaskara Rao and Bhaskara Rao (1983, Theorem
3.2.5). The same extension result for the case of a countably additive measure is the classical Carathéodory
extension theorem; see Loeb (2016, Theorem 10.2.1). In fact, as noted in the Introduction, a main motivation
for working with a finitely additive agent space is to allow any subset of agents to be measurable, namely,
T is the power set of T (which is a σ-algebra). Thus, there is no loss of generality by assuming T to be a
σ-algebra.

10A real valued function h on T is said to be simple if it can be expressed as
∑k

i=1 ci1Ai , where k is a
positive integer, ci a real number, Ai a measurable set in T , 1Ai

the indicator function of Ai in T ; the integral∫
T
hdµ of h is simply

∑k
i=1 ciµ (Ai). A real valued measurable function g on T is said to be integrable on

the finitely additive measure space (T, T , µ) if there exists a sequence {gn}∞n=1 of simple functions such that
limm,n→∞

∫
T
|gn − gm|dµ = 0, and for any ε > 0, limn→∞ µ ({t ∈ T : |gn(t)− g(t)| > ε}) = 0. The integral

of g is then defined to be limn→∞
∫
T
gndµ; see Bhaskara Rao and Bhaskara Rao (1983, Definition 4.4.11,

p. 104). A bounded real-valued measurable function is integrable since it can be approximated by a sequence
of simple functions uniformly.
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If x ∈ RL then ‖x‖ =
∑L

i=1 |xi|. If x, y ∈ RL then x ≥ y means xi ≥ yi and x� y means

xi > yi for all i = 1, . . . , L.

3 Economies, Games and Equilibria

In this section, we define economies and games, and the notions of a competitive and Nash

equilibrium over finitely additive measure spaces of agents. We show by means of examples

that if the agent space is taken to be the set of natural numbers with a density charge, then

an equilibrium may not exist.

3.1 Economies and competitive equilibria

The commodity space is RL
+. A real valued function u on RL

+ is strongly monotone if x ≥ y

and x 6= y imply that u(x) > u(y). Let U be the space of real valued, continuous and strongly

monotone functions on RL
+, with the compact-open topology; a discussion of this topology

can be found in Willard (1970, Section 43). It can be shown that U is a separable, metric

space. An economy specifies for each consumer a utility function u ∈ U and an endowment

vector ω ∈ RL
+.

Definition 1 Let (T, T , µ) be a finitely additive measure space.

(1) An economy is a measurable mapping E = (u, ω) : T −→ U × RL
+ such that ω is

integrable and ω̄ =
∫
T
ω dµ� 0.

(2) An allocation of E is an integrable mapping f from T to RL
+. An allocation is feasible

if
∫
T
f dµ =

∫
T
ω dµ.

(3) Given a price vector p ∈ RL
+ \ {0}, the budget set of consumer t is Bt(p) = {x ∈ RL

+ :

p · x ≤ p · ωt}.

(4) A competitive equilibrium of E is a pair (p, f), where p ∈ RL
+ \ {0}, f is a feasible

allocation, and for all t ∈ T : (a) f(t) ∈ Bt(p) and (b) ut(f(t)) ≥ ut(x) for all x ∈ Bt(p).
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(5) An allocation f of E is a competitive allocation if for some p, (p, f) is a competitive

equilibrium.

The following example shows that an economy, whose agent space is the set of natural

numbers with a density charge, may not have a competitive equilibrium.

Example 1 Let (N,P(N), µ) be an atomless, finitely additive agent space. Fix θ ∈ [1/2, 1).

The economy E = (u, ω) is defined as follows. For each t ∈ N,

ut(x1, x2) =
t+ 1

t
x

t
t+ 1
1 + x2, ωt = (θ, θ).

Suppose that there is a competitive equilibrium. If p ∈ R2
+ \ {0} is the equilibrium price

vector, then p� 0 since ut is strongly monotone for each t ∈ N. Without loss of generality

let p1 + p2 = 1.

For t ∈ N, the unique solution of maximize ut(x1, x2) subject to p1x1 + p2x2 = θ is

Dt1 = min

{
pt+1
2

pt+1
1

,
θ

p1

}
, Dt2 =

θ

p2
− p1Dt1

p2
.

We will consider two cases: p2/p1 < 1 and p2/p1 ≥ 1.

Suppose that p2/p1 < 1. Then for all t ∈ N, Dt1 = (p2/p1)
t+1. Since (p2/p1)

t+1 → 0 as t

tends to infinity, given ε > 0, Dt1 < ε for all but finitely many t’s. So,
∫
NDt1 dµ ≤ ε, which

gives
∫
NDt1 dµ = 0. Therefore,

∫
NDt2 dµ = θ/p2 > θ = ω̄2, a contradiction.

If p2/p1 ≥ 1, then Dt1 ≥ min{1, 2θ} = 1. So,
∫
NDt1 dµ ≥ 1 > θ = ω̄1, a contradiction.

Thus, E has no competitive equilibrium.11

Remark 1 Weiss (1981, Theorem 3) proved the existence of a competitive equilibrium for

economies over atomless, finitely additive agent spaces. Example 1 provides the first coun-

terexample to this result. Let S be the unit simplex in RL
+ and S◦ its interior. For any

p ∈ S◦, denote the mean excess demand (correspondence) by Z(p) =
∫
T

[D(p)− ω] dµ. Part

(iii) of Weiss (1981, Lemma) claims that Z is upper hemicontinuous. This claim is true in

11Example 1 is extended to the case of any finitely (but non-countably) additive agent space in the proof
of (i)⇒ (iii) in Theorem 1 below.
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the countably additive case, see Hildenbrand (1974, p. 149); but false under finite additivity.

In the setting of Example 1,
∫
T
D(p) dµ is not upper hemicontinuous, and neither is Z(p).

As has been shown,
∫
T
Dt1 dµ = 0 if p2/p1 < 1 and

∫
T
Dt1 dµ ≥ 1 if p2/p1 ≥ 1. Thus, the

claim of upper hemicontinuity fails at p = (1/2, 1/2).

3.2 Games and Nash equilibria

Let E = {e1, . . . , eL} be the set of unit vectors in RL and S = {s ∈ RL
+ :

∑L
k=1 sk = 1}

the unit simplex. Let V be the space of real valued continuous functions defined on E × S,

endowed with the sup norm metric. It is a complete, separable, metric space. A game assigns

a payoff function in V to each player.

Definition 2 Let (T, T , µ) be an atomless, finitely additive measure space.

(1) A game is a measurable function G : T −→ V .

(2) A mixed-strategy profile of G is a measurable function f from T to S. It is a pure-

strategy profile when E is substituted for S.12

(3) Given a mixed strategy profile g, the payoff to player t is G(t)
(
g(t),

∫
T
g dµ

)
=∑L

k=1 gk(t)G(t)
(
ek,
∫
T
g dµ

)
.

(4) A mixed strategy profile g is a mixed strategy Nash equilibrium of G if for all t ∈ T ,

G(t)
(
g(t),

∫
T
g dµ

)
≥ G(t)

(
a,
∫
T
g dµ

)
for all a ∈ E. If in addition, g takes values in

E, then it is a pure strategy Nash equilibrium.

The example below shows the nonexistence of a Nash equilibrium in mixed strategies in

atomless, countable-player games.

Example 2 Suppose there are two actions. The set of unit vectors and the unit simplex

in R2 can be identified with A = {0, 1} and K = [0, 1] respectively. Any x ∈ K can be

12Here we take the view that S is space of probability distributions on L pure strategies and the extreme
points in S are identified with the corresponding pure strategies.
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interpreted as the weight on action 1. Let (N,P(N), µ) be an atomless, finitely additive

player space. For each t ∈ N, let the payoff function be

G(t)(a, x) = a

(
1

t
− x
)
, a ∈ A.

We will derive the best responses and show that this game has no Nash equilibrium in pure

or mixed strategies.13

The best responses are as follows.

argmaxa∈AG(t)(a, x) =


{0, 1} if x = 1/t

{1} if x < 1/t

{0} if x > 1/t.

If x = 1/t then G(t)(0, x) = G(t)(1, x) = 0. If x < 1/t then G(t)(0, x) = 0 and G(t)(1, x) =

(1/t) − x > 0 which implies that 1 is the best response. If x > 1/t then G(t)(0, x) = 0 and

G(t)(1, x) = (1/t) − x < 0, which implies that 0 is the best response. Notice that given

x ∈ K, the best response is a singleton for almost all t.

Suppose that f from N to K is a (mixed strategy) Nash equilibrium. Let x =
∫
N f dµ.

If x = 0, then f(t) = 1 for all t ∈ N because of the best response property. This implies

that
∫
N f dµ = 1, a contradiction. If x > 0, then x > 1/t for all but finitely many t’s. This

implies that f(t) = 0 for all but finitely many t’s. So,
∫
N f dµ = 0, again a contradiction.

Thus, there is no Nash equilibrium in pure or even mixed strategies.14

13When the payoff function of an individual player is not continuous, the player may not be able to find
an optimal action. It is thus more or less expected that a countable-player game with discontinuous payoffs
may not have any equilibrium; see, for example, Peleg (1969), the discussion in Khan and Sun (2002, pp.
1768–1769), and Voorneveld (2010). To the best of our knowledge, Example 2 provides the first example on
the nonexistence of mixed-strategy Nash equilibrium in games with compact action spaces and continuous
payoffs.

14Example 2 is extended to the case of any atomless finitely (but non-countably) additive agent space in
the proof of (i)⇒ (iii) in Theorem 2 below.
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4 Idealized Limit Property

As already emphasized in the introduction, a principal motivation for considering economies

and games with infinitely many agents is to think in terms of an ideal set-up that furnishes

approximations for situations where the number of participants is large but finite. If such

a sequence of economies or games, and their equilibria, converge to their idealized limiting

counterparts, one would then expect their equilibria to also have corresponding properties

to hold in the limiting set-up that they have in the large but finite setting. This is surely

a minimal requirement. Along these lines, Hildenbrand (1974, p. 139) examined continuous

representations of finite-agent economies. We adopt the same approach by introducing a

replication function to construct a replica of {1, . . . ,m} on any atomless, finitely additive

measure space.

Definition 3 Let (T, T , µ) be an atomless, finitely additive measure space. A T -measurable

mapping αm from T to {1, . . . ,m} is a replication function of m-agents if µ ((αm)−1({i})) =

1/m for any i ∈ {1, . . . ,m}.

4.1 Large economies

For the idealized limit property of economies, in addition to convergence of preferences and

endowments, we require the convergence of competitive equilibria and mean endowments.

Definition 4 An economy E = (u, ω) on an atomless, finitely additive measure space

(T, T , µ) has the idealized limit property if

(1) for any sequence {En = (un, ωn)}∞n=1 of finite-agent economies with {fn}∞n=1 as com-

petitive allocations, where the number of agents in En is kn with limn→∞ kn =∞,

(2) for any sequence of replication functions {αkn}∞n=1 such that {En ◦ αkn}∞n=1 converges

to E pointwise on T , {fn ◦αkn}∞n=1 converges to some allocation f pointwise on T and

limn→∞
∫
T
ωn ◦ αkn dµ =

∫
T
ω dµ,

then f is a competitive allocation of E .

11



The following example shows that the idealized limit property may fail for an economy

with countably many agents.

Example 3 Let E = (u, ω) be the economy constructed in Example 1. Fix any n ∈ N and

let En be the restriction of E on {1, . . . , n}. The endowment of each agent in E and En is

(θ, θ). For 1 ≤ k ≤ n, let {Ank} be a partition of N such that Ank = {mn+ k : m = 0, 1, . . . },

and αn(t) = k for t ∈ Ank . Note that for any n ≥ t, t ∈ Ant and αn(t) = t. Thus unαn(t) = ut

for any n ≥ t, which implies that {En ◦ αn}∞n=1 converges to E pointwise.

Since En is a finite-agent economy with continuous, convex and strongly monotone prefer-

ences, it has a competitive equilibrium (pn, f
n) with pn � 0; see Arrow and Debreu (1954).

Suppose that pn1 + pn2 = 1. For any k ∈ {1, . . . , n}, the unique solution of agent k’s utility

maximization problem is

fn1 (k) = min

{
pk+1
n2

pk+1
n1

,
θ

pn1

}
, fn2 (k) =

θ

pn2
− pn1f

n
1 (k)

pn2
.

If pn2/pn1 ≥ 1 then fn1 (k) ≥ min {1, 2θ} = 1. Therefore, (1/n)
∑n

k=1 f
n
1 (k) ≥ 1 > θ =

(1/n)
∑n

k=1 ω
n
k1, a contradiction. Hence, pn2/pn1 < 1.

We will show that limn→∞(pn2/pn1) = 1. If not, then there is 0 < β < 1 and a strictly

increasing sequence {nj}, j = 1, 2, . . . such that pnj2/pnj1 < β for all nj.

1

nj

nj∑
k=1

f
nj
1 (k) ≤ 1

nj

nj∑
k=1

pk+1
nj2

pk+1
nj1

<
1

nj

nj∑
k=1

βk+1 =
β2(1− βnj)
nj(1− β)

→ 0

as j →∞. Hence, for some nj, (1/nj)
∑nj

k=1 f
nj
1 (k) < 1/4. This leads to

f
nj
2 (k) = θ +

pnj1

pnj2

(
θ − fnj1 (k)

)
1

nj

nj∑
k=1

f
nj
2 (k) = θ +

pnj1

pnj2

(
θ − 1

nj

nj∑
k=1

f
nj
1 (k)

)
> θ +

pnj1

4pnj2
> θ,

a contradiction. Therefore, limn→∞(pn2/pn1) = 1.

Since fn ◦ αn(t) = fn(t) for n ≥ t, fn1 ◦ αn(t) → 1 and fn2 ◦ αn(t) → 2θ − 1 as n → ∞.

However, the limit economy E = (u, ω) has no competitive equilibrium, which implies that

12



E does not have the idealized limit property.

4.2 Large games

Definition 2 considers a game with an atomless, finitely additive player space. Since an

individual player cannot influence the externality component which is the integral of an action

profile, the externality component remains unchanged even if a player deviates from her

given action in the action profile. When there are only finitely many players, the externality

component will change if one player deviates.

Following the spirit of Definition 2, we shall only consider finite-player games where the

payoff of a player depends on her own action and the average actions of all the players. An

m-player game can be modeled as a mapping G from the player space {1, . . . ,m} to the

space V of payoff functions, as described below.

Let V = {v1, . . . , vm} ⊆ V . When player j takes action aj in E for each 1 ≤ j ≤

m, player i’s payoff is G(i)(a1, . . . , am) = vi (ai, (a1 + · · ·+ am)/m). If player i deviates

from her action ai to bi with other players’ actions unchanged, then her new payoff will be

G(i)(a1, . . . , ai−1, bi, ai+1, . . . , am) = vi (bi, (a1 + · · ·+ ai−1 + bi + ai+1 + · · ·+ am)/m). The

expected payoffs can be defined as usual in the normal form of a finite-player game. Thus,

the payoff function G(i) of player i in the finite-player game can be identified with vi ∈ V .

Definition 5 Let m ≥ 2 be an integer.

(1) An m-player game is a mapping G : {1, . . . ,m} −→ V , where G(i) is as indicated

above.

(2) A mixed-strategy profile of G is a measurable function f from T to S. It is a pure-

strategy profile when E is substituted for S.

(3) A mixed strategy profile g = (g(1), . . . , g(m)) is a mixed strategy Nash equilibrium

of G if for all i ∈ {1, . . . ,m}, G(i) (g) ≥ G(i) (g(1), . . . , g(i− 1), a, g(i+ 1), . . . , g(m))

for all a ∈ E. If in addition, g takes values in E, then it is a pure strategy Nash

equilibrium.

13



The existence of a mixed strategy Nash equilibrium of G follows from Nash (1950). For

the idealized limit property of large games, we require the convergence of payoff functions

and mixed strategy Nash equilibria.

Definition 6 A game G on an atomless, finitely additive measure space (T, T , µ) has the

idealized limit property if

(1) for any sequence {Gn}∞n=1 of finite-player games with {fn}∞n=1 as mixed strategy Nash

equilibria, where the number of players in Gn is kn with limn→∞ kn =∞,

(2) for any sequence of replication functions {αkn}∞n=1 such that {Gn ◦ αkn}∞n=1 converges

to G pointwise on T and {fn ◦ αkn}∞n=1 converges to some mixed strategy profile f

pointwise on T ,

then f is a mixed strategy Nash equilibrium of G.

The next example shows that the idealized limit property may fail for a game with count-

ably many players.

Example 4 Let G be the game constructed in Example 2. Fix any n ∈ N and let Gn be

the restriction of G on {1, . . . , n2}. For 1 ≤ k ≤ n2, let {Ank} be a partition of N such that

Ank = {mn2 + k : m = 0, 1, . . . } and αn
2
(t) = k for any t ∈ Ank . Note that for any n ≥

√
t,

αn
2
(t) = t. So, Gn◦αn2

(t) = G(t) for any n ≥
√
t, which implies that {Gn◦αn2}∞n=1 converges

to G pointwise on T .

Fix any n ≥ 2. Let fn(k) = 1 if 1 ≤ k ≤ n and fn(k) = 0 if n < k ≤ n2. Then

x = (1/n2)
∑n2

k=1 f
n(k) = n/n2 = 1/n. We will show that fn is a pure strategy Nash

equilibrium of Gn.

For any 1 ≤ k ≤ n, 1/k ≥ 1/n = x. Gn(k)(1, 1/n) = (1/k) − (1/n) ≥ 0 and

Gn(k)(0, 1/(n− 1)) = 0. Thus, fn(k) = 1 is a best response for 1 ≤ k ≤ n.

Similarly, if n < k ≤ n2, then 1/k ≤ 1/(n + 1). Gn(k)(0, 1/n) = 0 and Gn(k)(1, 1/(n +

1)) = (1/k)− [1/(n+ 1)] ≤ 0. Thus, fn(k) = 0 is a best response for n < k ≤ n2.

We have shown that fn is a pure strategy Nash equilibrium of Gn.

14



Fix any t ∈ N. For any n ≥ t, αn
2
(t) = t, which implies that fn ◦ αn2

(t) = 1. So,

fn ◦ αn2
(t) → 1 as n → ∞. However, the limit game G has no mixed strategy Nash

equilibrium. So, G does not have the idealized limit property.

5 Necessity of Countable Additivity

Examples 1 and 3 show the failure of the finitely additive agent space (N,P(N), µ) in terms

of the existence and the idealized limit property for competitive equilibria in large economies.

The following theorem goes further in characterizing the validity of these two properties in

large economies by countable additivity of the agent space.15

Theorem 1 Let (T, T , µ) be an atomless, finitely additive measure space. Then the follow-

ing are equivalent.16

(i) Every economy E on (T, T , µ) has a competitive equilibrium.

(ii) Every economy E on (T, T , µ) has the idealized limit property.

(iii) (T, T , µ) is a countably additive measure space.

We now turn to games. Examples 2 and 4 show the failure of the finitely additive player

space (N,P(N), µ) in terms of the existence and the idealized limit property for Nash equi-

libria in large games. The next theorem shows the equivalence of countable additivity of the

player space with the validity of these properties in large games.

15Vind (1964) considered another approach in general equilibrium theory, the so-called coalitional ap-
proach, where the primitives are coalitions rather than individual agents. In the setting of atomless, count-
able additive agent spaces, Debreu (1967) showed the equivalence between this approach and the usual
measure-theoretic approach as in Aumann (1964). On the other hand, when the countable additivity is
reduced to finite additivity, the coalitional approach in terms of Boolean algebras delivers an existence result
on competitive equilibria as in Armstrong and Richter (1986). This shows that in contrast to the equivalence
result in Debreu (1967), the usual measure-theoretic and coalitional approaches are not equivalent in the
setting of finitely additive agent spaces.

16Note that the utility functions in the proofs of (i)⇒ (iii) and (ii)⇒ (iii) in Theorem 1 in Appendix A.1
are concave. Thus, one can still maintain the equivalence in Theorem 1 when (i) and (ii) are replaced respec-
tively by “(i’) Every economy E on (T, T , µ) with concave utility functions has a competitive equilibrium”
and “(ii’) Every economy E on (T, T , µ) with concave utility functions has the idealized limit property”.
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Theorem 2 Let (T, T , µ) be an atomless, finitely additive measure space. Then the follow-

ing are equivalent.

(i) Every game G on (T, T , µ) has a mixed strategy Nash equilibrium.

(ii) Every game G on (T, T , µ) has the idealized limit property.

(iii) (T, T , µ) is a countably additive measure space.

6 Conclusion

A countably additive measure on a σ-algebra of subsets imposes some restrictions on the

underlying measure space, which usually allows the existence of non-measurable sets. On

the other hand, a density charge on the agent space of natural numbers is defined on all

subsets of the set of natural numbers, which means that any function or set on such an agent

space will automatically be measurable. Such a property was emphasized as an advantage

in Weiss (1981), Armstrong and Richter (1984, 1986), and presumably others. From the

analytic point of view, though countably additive measure spaces allow non-measurable sets,

the whole subject of real analysis has developed many tools for dealing with measurability

issues so that one can work within the framework of measurable functions for all kinds of

applications. In contrast, the lack of countably additivity for a density charge prevents one

from using the tools in real analysis and leads to the non-existence of equilibria as considered

in Examples 1 and 2.

Recall that the classical law of large numbers guarantees the asymptotic stability of the

sample means for an i.i.d. sequence of real-valued random variables with a first moment.

Since the limit of the arithmetic average of a bounded sequence of real numbers can also

be written as the value of the integral of the sequence with respect to a density charge on

the countable set of natural numbers, the classical law of large numbers for a bounded i.i.d.

sequence of real-valued random variables can be restated in the weaker form that the integral

of almost any sample sequence over a density charge on the set of natural numbers is the

16



theoretical mean.17 Such a statement involving a non-countably additive agent space has

been used in many papers in various areas, such as macroeconomics, financial economics,

public economics, industrial organization, political economy and international economics,

to justify the claim on the removal of individual-level uncertainty via aggregation.18 Our

results in this paper indicate that if a general economic model indeed uses finitely additive

agent spaces such as the set of natural numbers with a density charge, then it is completely

uncertain that one would be able to find any interesting equilibria in such a model.

In addition to the use of atomless countably/finitely additive measure spaces of agents, one

can simply analyze a sequence of increasingly large finite sets of agents directly. For example,

Edgeworth (1881) conjectured that the core of an economy shrinks to the set of Walrasian

equilibria as the number of agents increases to infinity.19 Such an approach of analyzing

a large but finite number of agents directly has been used extensively in the literature. A

disadvantage of this approach is that complicated combinatorial arguments may be needed

in multiple steps of approximations for general models.

Since hyperfinite sets as constructed in nonstandard analysis have all the formal properties

of finite sets and at the same time capture the relevant asymptotic properties, they can also

serve as an ideal model for many agents.20 Based on the hyperfinite sets, one can construct a

special class of atomless countably additive measure spaces – Loeb counting measure spaces,21

which has been argued to provide a right model for situations with a large number of agents

in the sense that one can go back and forth between exact results on Loeb counting measure

17On the other hand, Proposition 6.5 of Sun (2006) indicates that the corresponding statement for such a
sequence of random variables may fail for every sample sequence in terms of sample distributions. We may
also point out that under the framework of a Fubini extension for countably additive agent-sample spaces,
the exact law of large numbers and its converse in terms of sample distributions/means has been shown in
the paper.

18See, for example, Feldman and Gilles (1985), Williams (1987), Sargent (1991), He and Wang (1995),
Hess and Orphanides (2001), Gomes, Kogan and Zhang (2003), Casas-Arce and Martinez-Jerez (2009),
Bierbrauer and Sahm (2010), Ebrahimy and Shimer (2010), Ennis and Keister (2010), Costnot, Nonaldson
and Komunjer (2012), Acemoglu and Jensen (2015), Bierbrauer and Boyer (2016).

19For the study of such convergence results in general equilibrium theory, see, for example, Debreu and
Scarf (1963), Hildenbrand (1974), Trockel (1976), Anderson (1978, 1985), Vives (1988), Serrano, Vohra and
Volij (2001), and McLean and Postlewaite (2002, 2005).

20See, for example, Brown and Robinson (1975), Brown and Loeb (1976), Khan (1974), and Khan and
Sun (1996, 1999).

21For more details on Loeb measure spaces and nonstandard analysis, see Loeb and Wolff (2015).
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spaces and approximate results for the asymptotic large finite case.22

Furthermore, the theory of weak convergence of measures also provides a link between

asymptotic large finite results and (countably additive) measure-theoretic results.23 Thus,

one may say that the three approaches for modeling many agents, namely, large finitely

many agents, atomless countably additive agent spaces and hyperfinite agent spaces with a

Loeb counting measure can be unified.

In conclusion, the approach of using finitely (but non-countably) additive agent spaces

may not satisfy the minimal consistency requirement in terms of either equilibrium existence,

or the idealized limit property that captures the limiting behavior of some corresponding

large finite models.24 Since a countably additive measure space must be finitely additive,

any measure-theoretic result that holds on general finitely additive measure spaces will au-

tomatically hold on countably additive measure spaces. Therefore, in terms of applications,

it is not expected that atomless finitely additive agent spaces will play any significant role

beyond the framework of atomless countably additive agent spaces.25 Indeed, the foundation

of probability theory is set on countably additive measure spaces. Thus, in order to have

a viable mathematical model for economic analysis, one may try to avoid working with an

atomless finitely (but non-countably) additive measure space as the agent space.26

22Such a property is called “asymptotic implementability” in Khan and Sun (1999). More specifically, an
asymptotic result for the large finite case can be restated to the hyperfinite setting via the so-called transfer
principle between the standard and nonstandard models, which can be further reduced to an exact result
on a Loeb counting measure space by rounding-off the infinitesimals (pushing-down). On the other hand,
an exact result on a Loeb counting measure space can be lifted to an internal result involving hyperfinitely
many agents, which leads to an asymptotic result for the large finite case by the transfer principle again. It
is also pointed out in Khan and Sun (1999) that the measurability issue as discussed in Dubey and Shapley
(1977, 1994) in terms of the limitation on the non-cooperative aspect of an equilibrium can be resolved via
the special class of (countably additive) Loeb counting spaces.

23See, for example, Hildenbrand (1974) and Andersonand Rashid (1978).
24As far as approximate equilibrium is concerned, Propositions 1 and 2 show the existence under additional

assumptions on such agent spaces. However, if one does care about approximate equilibrium, one may analyze
it directly for the more intuitive setting of large finitely many agents.

25See, for example, Milnor and Shapley (1961), Aumann (1964), Hildenbrand (1974), Schmeidler (1973),
Hammond (1979), Cole, Mailath and Postlewaite (1992), Gul and Postlewaite (1992), Duffie, Gârleanu
and Pedersen (2005), Yannelis (2009), Hellwig (2010), Acemoglu and Jensen (2015), Vives (2017) for some
economic applications.

26The use of purely finitely additive measures has been ruled out as price systems in capital theory and in
general equilibrium theory with an infinite dimensional commodity space; see, for example, Bewley (1972,
p. 516 and p. 523) and Kurz and Majumdar (1972). See also Stinchcombe (1997) and Stinchcombe (2016)
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APPENDICES

A Proofs of Theorems 1 and 2

A.1 Proof of Theorem 1

(i)⇒ (iii): Assume that µ is not countably additive.27 Then there is an increasing sequence

of sets {Bn}∞n=1 in T such that ∪∞n=1Bn = T and limn→∞ µ(Bn) = c < 1. Let C1 = B1,

and for n ≥ 2, Cn = Bn \ Bn−1. Then {Cn}∞n=1 is a sequence of pairwise disjoint sets,

∪kn=1Cn = Bk for 1 ≤ k <∞ and ∪∞n=1Cn = T .

For a fixed θ ∈ [(c+ 1)/2, 1), the economy E is as follows. For n ∈ N and t ∈ Cn, let

ut(x1, x2) =
n+ 1

n
x

n
n+ 1
1 + x2, ωt = (θ, θ).

If p ∈ R2
+ \ {0} is an equilibrium price vector then p � 0 because ut is strongly monotone

for each t ∈ T . Without loss of generality suppose that p1 + p2 = 1.

For t ∈ Cn, the unique solution of maximize ut(x1, x2) subject to p1x1 + p2x2 = θ is

Dt1 = min

{
pn+1
2

pn+1
1

,
θ

p1

}
, Dt2 =

θ

p2
− p1Dt1

p2
.

We will consider two cases: p2/p1 < 1 and p2/p1 ≥ 1.

Suppose that p2/p1 < 1. Then Dt1 ≤ (p2/p1)
n+1 for any t ∈ Cn, so Dt1 ≤ 1 for any

t ∈ T . Moreover, if t ∈ Cn and n > m then Dt1 ≤ (p2/p1)
n+1 ≤ (p2/p1)

m+1. Fix a positive

integer m.

∫
T
Dt1 dµ =

∫
Bm
Dt1 dµ+

∫
T\BmDt1 dµ

≤
∫
Bm

1 dµ+

∫
T\Bm

pm+1
2

pm+1
1

dµ ≤ µ(Bm) +
pm+1
2

pm+1
1

.

for discussion of problems of working with finitely additive measure spaces in decision theory.
27It is not necessary to assume µ to be atomless in the example described in this part of the proof.
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By letting m tend to infinity, we obtain that
∫
T
Dt1 dµ ≤ limm→∞ µ(Bm) = c. This yields,

∫
T
Dt2 dµ =

θ

p2
−
p1
∫
T
Dt1 dµ

p2
= θ +

p1
p2

(
θ −

∫
T
Dt1 dµ

)
> θ = ω̄2,

a contradiction.

Assume that p2/p1 ≥ 1. If t ∈ Cn then Dt1 ≥ min{1, 2θ} = 1. So,
∫
T
Dt1 dµ ≥ 1 > θ = ω̄1,

a contradiction.

Thus, E does not have a competitive equilibrium.28

(iii) ⇒ (i): Let E be an economy on (T, T , µ). The measurability assumption on E

embodied in Definition 1 implies the measurability condition in Aumann (1966). So, the

implication follows from Aumann (1966).

(iii)⇒ (ii): Given E , let En, fn, αkn and f be as in Definition 4. Let pn be a price vector

such that (pn, fn) is a competitive equilibrium of En. Since the preferences are strongly

monotone, pn · fn(i) = pn · ωni for 1 ≤ i ≤ kn and pn � 0. Without loss of generality we can

assume that for each n, pn belongs to the unit simplex and that {pn} → p. We will show

that (p, f) is a competitive equilibrium of E .

For notational simplicity, let ũnt = uαkn (t), ω̃
n = ωn ◦ αkn and f̃n = fn ◦ αkn . Clearly,∫

T
f̃n dµ =

∫
T
ω̃n dµ and pn · f̃n(t) = pn · ω̃nt for all t ∈ T . Therefore,

p · f(t) = lim
n→∞

pn · f̃n(t) = lim
n→∞

pn · ω̃nt = p · ωt

for all t ∈ T .

Fix t ∈ T . Since {f̃n(t)} → f(t), the set {f(t)} ∪ {f̃n(t) : n ∈ N} is compact. Since

{ũnt } → ut in the compact-open topology, {ũnt } → ut uniformly on every compact set; see

Willard (1970, Theorem 43.7). This implies that limn→∞ ũ
n
t (f̃n(t)) = ut(f(t)).

Suppose that for some y ∈ RL
+, ut(y) > ut(f(t)). Then ũnt (y) > ũnt (f̃n(t)) for sufficiently

large n. Therefore, pn · y > pn · ω̃nt for sufficiently large n and in the limit, p · y ≥ p · ωt. We

have shown that ut(y) > ut(f(t)) implies that p · y ≥ p · ωt.
28If we specialize the agent space (T, T , µ) to (N,P(N), µ) and take Bn = {1, . . . , n} for every n ∈ N, then

c = 0, Cn = {n} for every n ∈ N, and we obtain Example 1.

20



We need to show that ut(y) > ut(ft) implies p · y > p · ωt. Towards this end, we first

establish that p � 0. Suppose to the contrary, say p1 = 0. Since p 6= 0 and
∫
T
ω dµ � 0,

there is V ⊆ T with µ(V ) > 0 and p · ωt > 0 if t ∈ V .

For 1 ≤ i ≤ L, let ei denote the i-th unit vector. Let t ∈ V . Then p · f(t) = p · ωt > 0

implies that for some j, pj > 0 and fj(t) > 0. By strong monotonicity ut(f(t)+e1) > ut(f(t))

and by continuity of ut, ut(f(t) + e1− δej) > ut(f(t)) for sufficiently small δ > 0. Therefore,

p · ωt ≤ p · (f(t) + e1 − δej) = p · f(t)− pjδ < p · f(t),

a contradiction. This proves p� 0.

To show that
∫
T
f dµ =

∫
T
ω dµ, we first establish that {f̃n}∞n=1 is uniformly integrable.

Since {ω̃n} → ω pointwise, {
∫
T
ω̃ndµ} →

∫
T
ωdµ and each of these functions is nonnegative,

{ω̃n}∞n=1 is uniformly integrable; see Hildenbrand (1974, p. 52).

If βn(t) =
∑L

j=1 ω̃
n
tj, then {βn}∞n=1 is uniformly integrable. Observe that pn · f̃n(t) =

pn · ω̃nt ≤ βn(t). In particular, pnj f̃
n
j (t) ≤ βn(t) for j = 1, . . . , L. Since {pn} → p� 0, given

0 < γ < min{p1, . . . , pL}, there is N such that for all n ≥ N , pnj > γ for all j. Therefore,

0 ≤ f̃nj (t) ≤ βn(t)/γ if n ≥ N . Since {(1/γ)βn}∞n=1 is uniformly integrable, {f̃nj }∞n=1 is

uniformly integrable for all j and {f̃n}∞n=1 is uniformly integrable.

Since {f̃n}∞n=1 is uniformly integrable and converges pointwise to f ,
∫
T
fdµ = limn→∞

∫
T
f̃ndµ

= limn→∞
∫
T
ω̃n dµ =

∫
T
ω dµ. Thus, (p, f) is a competitive equilibrium of E .

(ii) ⇒ (iii): Suppose that µ is not countably additive. Consider the economy E in the

proof of (i)⇒ (iii). We will show that it does not have the idealized limit property.

Consider the partition {Cn}∞n=1 of T constructed in the proof of (i)⇒ (iii). If µ(Cn) = 0,

then let Cm
n = Cn for any m ∈ N. In this case, µ(Cm

n ) is a multiple of 2−m, with the

multiplicative constant zero. If µ(Cn) > 0, then for some J ∈ N, µ(Cn) > 1/2J . Since µ is

atomless, there exists {Cm
n } such that Cm

n ⊆ Cm+1
n ⊆ Cn, ∪∞m=1C

m
n = Cn and µ(Cm

n ) is a

multiple of 2−m. (For m < J , µ(Cm
n ) can be zero.)

Fix any k ∈ N. From the construction of {Cn}∞n=1, we know that µ(T\ ∪kn=1 Cn) > 0.

There exists nk ∈ N such that nk ≥ k and k2−nk < µ(T\ ∪kn=1 Cn). Therefore, we can find k
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disjoint subsets Dnk
1 , . . . , Dnk

k of T\ ∪kn=1 Cn such that µ(Dnk
r ) = 2−nk for r = 1, . . . , k. Note

that µ(Cnk
1 ∪D

nk
1 ), . . . , µ(Cnk

k ∪D
nk
k ) and µ

(
T\ ∪kr=1 (Cnk

r ∪Dnk
r )
)

are positive multiples of

2−nk . Then we can partition Cnk
1 ∪D

nk
1 , . . . , Cnk

k ∪D
nk
k and T\∪kr=1 (Cnk

r ∪Dnk
r ) into 2nk sets

F nk
1 , . . . , F nk

2nk such that µ(F nk
i ) = 2−nk for any i ∈ {1, . . . , 2nk}. Without loss of generality,

we can assume that nk is increasing in k. Henceforth, for notational simplicity, we will denote

by s(k) = 2nk .

We first construct an economy Ek on {1, . . . , s(k)}. As in the proof of (i) ⇒ (iii), let

θ ∈ [(c+ 1)/2, 1) be a fixed constant. For each agent i ∈ {1, . . . , s(k)}, let ωki = (θ, θ) and

uki (x1, x2) =


n+ 1
n x

n
n+ 1
1 + x2 if F nk

i ⊆ Cnk
n ∪Dnk

n and n ≤ k

s(k) + 1
s(k)

x

s(k)
s(k) + 1
1 + x2 otherwise.

Let αs(k) be a measurable function from T to {1, . . . , s(k)} such that for any t ∈ F nk
i ,

αs(k)(t) = i. Let Ek = Ek ◦ αs(k). It is clear that Ek = (ũk, ω̃k) is an economy on T with

ω̃kt = (θ, θ) and

ũkt (x1, x2) =


n+ 1
n x

n
n+ 1
1 + x2 if t ∈ Cnk

n ∪Dnk
n and n ≤ k

s(k) + 1
s(k)

x

s(k)
s(k) + 1
1 + x2 otherwise.

for t ∈ T .

Let t ∈ T . Then t ∈ Cn for some n, and there exists k ≥ n such that t ∈ Cnk
n . If k′ ≥ k

then t is also in C
nk′
n . This implies, ũk

′
t (x1, x2) = ũkt (x1, x2) = [(n+ 1)/n]x

n/(n+1)
1 +x2. Thus,

for any t ∈ Cn, ũkt (x1, x2) = [(n + 1)/n]x
n/(n+1)
1 + x2 when k is large enough. Therefore,

{Ek(t)}∞k=1 converges to E(t) for each t ∈ T .

Since Ek is a finite-agent economy with continuous, convex and strongly monotone pref-

erences, it has a competitive equilibrium (pk, f
k) with pk � 0. Assume that pk1 + pk2 = 1.

The equilibrium demands are

fk1 (i) = min

{
pn+1
k2

pn+1
k1

,
θ

pk1

}
, fk2 (i) =

θ

pk2
− pk1f

k
1 (i)

pk2
if F nk

i ⊆ Cnk
n ∪Dnk

n and n ≤ k
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and

fk1 (i) = min

{
p
s(k)+1
k2

p
s(k)+1
k1

,
θ

pk1

}
, fk2 (i) =

θ

pk2
− pk1f

k
1 (i)

pk2
otherwise.

If pk2/pk1 ≥ 1 then for any i, fk1 (i) ≥ min {1, 2θ} = 1. Therefore, (1/s(k))
∑s(k)

i=1 f
k
1 (i) ≥ 1 >

θ = (1/s(k))
∑s(k)

i=1 ω
k
i1, a contradiction. Hence, pk2/pk1 < 1.

We will show that limk→∞(pk2/pk1) = 1. If not, then there is 0 < β < 1 and a strictly

increasing sequence {kj}, j = 1, 2, . . . such that pkj2/pkj1 < β for all kj. Since (pkj2/pkj1)
` is

decreasing in `,

1

s(kj)

s(kj)∑
i=1

f
kj
1 (i) ≤ 1

s(kj)

s(kj)∑
`=1

p`+1
kj2

p`+1
kj1

<
1

s(kj)

s(kj)∑
`=1

β`+1 =
β2(1− βs(kj))
s(kj)(1− β)

→ 0

as j →∞. Hence, for some kj, (1/s(kj))
∑s(kj)

i=1 f
kj
1 (i) < 1/4. This leads to

f
kj
2 (i) = θ +

pkj1

pkj2

(
θ − fkj1 (i)

)
1

s(kj)

s(kj)∑
i=1

f
kj
2 (i) = θ +

pkj1

pkj2

θ − 1

s(kj)

s(kj)∑
i=1

f
kj
1 (i)

 > θ +
pkj1

4pkj2
> θ,

a contradiction. Therefore, limk→∞(pk2/pk1) = 1.

Let f̃k = fk ◦αs(k). Then for any t ∈ T , f̃k1 (t)→ 1 and f̃k2 (t)→ 2θ−1. However, the limit

economy E has no competitive equilibrium, so does not have the idealized limit property.

A.2 Proof of Theorem 2

(i)⇒ (iii): Assume that µ is not countably additive. Then there is an increasing sequence of

sets {Bn}∞n=1 in T such that ∪∞n=1Bn = T and limn→∞ µ(Bn) = c < 1. Let C1 = B1, and for

n ≥ 2, Cn = Bn \ Bn−1. Then {Cn}∞n=1 is a sequence of pairwise disjoint sets, ∪kn=1Cn = Bk

for 1 ≤ k <∞ and ∪∞n=1Cn = T .

Let A = {0, 1} be the set of actions and K = [0, 1]. The payoffs are defined as follows.
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For each t ∈ Cn, let

G(t)(a, x) = a(βn − x), a ∈ A where βn = c+
1− c
n

.

Note that β1 = 1, βn > c for each n ≥ 1, and {βn}∞n=1 is a monotonically decreasing sequence

converging to c.

It is easy to show that the best responses are as follows. If t ∈ Cn, then

argmaxa∈AG(t)(a, x) =


{0, 1} if x = βn

{1} if x < βn

{0} if x > βn.

This game does not have a mixed strategy Nash equilibrium. Let f from T to K be a

Nash equilibrium and x =
∫
T
f dµ. Suppose that x ≤ c < 1. Then for all t ∈ T , f(t) = 1

which implies that x = 1, a contradiction. Now suppose that x > c. Then there exists a

unique n0 ∈ N such that βn0+1 < x ≤ βn0 . For n ≥ n0 + 1 and t ∈ Cn, f(t) = 0. So,

x =
∫
T
f dµ =

∑n0

i=1

∫
Ci
f dµ ≤

∑n0

i=1 µ(Ci) = µ(Bn0) ≤ c, a contradiction. Thus, there is no

mixed strategy Nash equilibrium.

(iii) ⇒ (i): Schmeidler (1973) showed the existence result for the case with the player

space being the Lebesgue unit interval. The same result holds on any atomless, countably

additive measure space; see, for example, Khan and Sun (2002, Theorem 2). In fact, there

is a pure strategy Nash equilibrium.

(ii)⇒ (iii): Suppose that µ is not countably additive. Consider the game G in the proof

of (i)⇒ (iii). We will show that it does not have the idealized limit property.

Consider the partition {Cn}∞n=1 of T constructed in the proof of (i)⇒ (iii). If µ(Cn) = 0,

then let Cm
n = Cn for any m ∈ N. In this case, µ(Cm

n ) is a multiple of 2−m, with the

multiplicative constant zero. If µ(Cn) > 0, then for some J ∈ N, µ(Cn) > 1/2J . Since µ is

atomless, there exists {Cm
n } such that Cm

n ⊆ Cm+1
n ⊆ Cn, ∪∞m=1C

m
n = Cn and µ(Cm

n ) is a

multiple of 2−m. (For m < J , µ(Cm
n ) can be zero.)

Fix any k ∈ N. From the construction of {Cn}∞n=1, we know that µ(T\∪kn=1Cn) > 0. There
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exists nk ∈ N such that nk ≥ k and k2−nk < min{µ(T\∪kn=1Cn), (1−c)/k}. Therefore, we can

find k disjoint subsets Dnk
1 , . . . , Dnk

k of T\∪kn=1Cn such that µ(Dnk
r ) = 2−nk for r = 1, . . . , k.

Note that µ(Cnk
1 ∪D

nk
1 ), . . . , µ(Cnk

k ∪D
nk
k ) and µ

(
T\ ∪kr=1 (Cnk

r ∪Dnk
r )
)

are positive multiples

of 2−nk . Then we can partition Cnk
1 ∪D

nk
1 , . . . , Cnk

k ∪D
nk
k and T\∪kr=1(Cnk

r ∪Dnk
r ) into 2nk sets

F nk
1 , . . . , F nk

2nk such that µ(F nk
i ) = 2−nk for any i ∈ {1, . . . , 2nk}. Without loss of generality,

we can assume that nk is increasing in k. Henceforth, for notational simplicity, we will denote

by s(k) = 2nk .

We first construct a game Gk on {1, . . . , s(k)}. Let

Gk(i)(a, x) =

a(βn − x) if F nk
i ⊆ Cnk

n ∪Dnk
n and n ≤ k

0 otherwise

for each player i ∈ {1, . . . , s(k)}. Let αs(k) be a measurable function from T to {1, . . . , s(k)}

such that for any t ∈ F nk
i , αs(k)(t) = i. Let Gk = Gk ◦ αs(k). It is clear that Gk is a game on

T with

Gk(t)(a, x) =

a(βn − x) if t ∈ Cnk
n ∪Dnk

n and n ≤ k

0 otherwise

for any t ∈ T .

Let t ∈ T . Then t ∈ Cn for some n, and there exists k ≥ n such that t ∈ Cnk
n . If k′ ≥ k

then t is also in C
nk′
n . This implies Gk′(t)(a, x) = Gk(t)(a, x) = a(βn − x). Thus, for any

t ∈ Cn, Gk(t)(a, x) = a(βn − x) when k is large enough. Therefore, {Gk(t)}∞k=1 converges to

G(t) for each t ∈ T .

Define a function fk from {1, . . . , s(k)} to A as fk(i) = 1 if F nk
i ⊆ ∪kn=1 (Cnk

n ∪Dnk
n ) and

fk(i) = 0 otherwise. It is clear that {fk ◦ αs(k)}∞k=1 converges to 1 pointwise on (T, T , µ).

We will show that fk is a pure strategy Nash equilibrium of Gk. Note that

x∗ =
1

s(k)

s(k)∑
i=1

fk(i) = µ
(
∪kn=1 (Cnk

n ∪Dnk
n )
)

= µ
(
∪kn=1C

nk
n

)
+ µ

(
∪kn=1D

nk
n

)
≤ µ

(
∪kn=1Cn

)
+

k

s(k)
≤ µ(Bk) +

k

s(k)
< c+

1− c
k

,
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where the last inequality follows from µ(Bk) ≤ c and k/s(k) < (1− c)/k. Therefore, for any

n ≤ k, x∗ < c+ [(1− c)/n] = βn.

Suppose that the payoff function of player i is Gk(i)(a, x) = a(βn−x). Then Gk(i)(1, x∗) =

βn − x∗ > 0 = Gk(i)(0, y) for any y ∈ [0, 1]. This shows that fk is a pure strategy Nash

equilibrium of Gk. However, the limit game G has no Nash equilibrium. Thus, the idealized

limit property fails.

(iii) ⇒ (ii): Let {Gn}∞n=1 be a sequence of finite-agent games with {fn}∞n=1 as mixed

strategy Nash equilibria, where the number of agents in Gn is kn and limn→∞ kn = ∞.

Suppose that there exists a sequence of replication functions {αkn}∞n=1 such that Gn ◦ αkn

converges to G pointwise on T , fn ◦ αkn converges to f pointwise on T , We show that f is a

mixed strategy Nash equilibrium of G.

For simplicity, let Gn = Gn ◦ αkn and f̃n = fn ◦ αkn . For each t ∈ T and n ∈ N,

f̃n(t) = (f̃n1 (t), . . . , f̃nL(t)) ∈ S. Then f̃nl (t) (or f̃n
el

(t)) is the probability with which agent t

plays action el. Note that {f̃n} → f pointwise as n → ∞. By the dominated convergence

theorem
∫
T
f̃n dµ = 1

kn

∑kn
i=1 f

n(i) →
∫
T
f dµ. For each n, fn is a Nash equilibrium of Gn.

So for each t ∈ T such that αkn(t) = i,

∑
a∈Ekn

Gn(t)(ai,
1

kn

kn∑
j=1

aj)f
n
a1

(1) . . . fnakn (kn)

≥
∑

a−i∈Ekn−1

Gn(t)(a′,
1

kn
a′ +

1

kn

kn∑
j 6=i

aj)f
n
a1

(1) . . . fnai−1
(i− 1)fnai+1

(i+ 1) . . . fnakn (kn) (1)

for every a′ ∈ E. Let xn(i), 1 ≤ n < ∞, 1 ≤ i ≤ kn be random variables from a probability

space (Ω,F , P ) to E such that the distribution of xn(i) is fn(i) for each n and i, and for

each n, the random variables {xn(i), 1 ≤ i ≤ kn} are independent. For the remainder of the

proof E denotes the expectation of a random variable. Then the inequality in Equation (1)

can be written as

EGn(t)(xn(i),
1

kn

kn∑
j=1

xn(j)) ≥ EGn(t)(a′,
1

kn
a′ +

1

kn

kn∑
j 6=i

xn(j)).
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for every a′ ∈ E.

Note that E(
∑kn

j=1 x
n(j)) =

∑kn
j=1 f

n(j) and
var(

∑kn
j=1 x

n(j))

k2n
→ 0, by Triangular Arrays

Theorem, ∑kn
j=1 x

n(j)−
∑kn

j=1 f
n(j)

kn
→ 0

in probability.

Fix any t ∈ T . Since {Gn(t)} → G(t) in sup norm, {Gn(t)} is relatively compact. By the

Ascoli-Arzelà Theorem (Loeb (2016, p. 171)), {Gn(t)} is uniformly bounded and equicon-

tinuous. Suppose that {Gn(t)} is bounded by M
2

. Then for any (a, b), (a′, b′) ∈ S × S, we

have

|Gn(t)(a, b)− Gn(t)(a′, b′)| ≤M. (2)

Fix t ∈ T , a′ ∈ E and let ε > 0. There exists δ > 0 such that

|
kn∑
j=1

xn(j)−
kn∑
j=1

fn(j)| < δ

implies

|Gn(t)(xn(i),
1

kn

kn∑
j=1

xn(j))− Gn(t)(xn(i),
1

kn

kn∑
j=1

fn(j))| ≤ ε

10(M + 1)
.

Since ∑kn
j=1 x

n(j)−
∑kn

j=1 f
n(j)

kn
→ 0

in probability, there exists N1 such that for n ≥ N1,

P (|
kn∑
j=1

xn(j)−
kn∑
j=1

fn(j)| ≥ δ) ≤ ε

10(M + 1)
.
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Let A be the event when |
∑kn

j=1 x
n(j)−

∑kn
j=1 f

n(j)| < δ. Then for n ≥ N1,∣∣∣∣∣EGn(t)(xn(i),
1

kn

kn∑
j=1

xn(j))− EGn(t)(xn(i),
1

kn

kn∑
j=1

fn(j))

∣∣∣∣∣
≤

∣∣∣∣∣E
(
Gn(t)(xn(i),

1

kn

kn∑
j=1

xn(j))− Gn(t)(xn(i),
1

kn

kn∑
j=1

fn(j))

)
1A

∣∣∣∣∣
+

∣∣∣∣∣E
(
Gn(t)(xn(i),

1

kn

kn∑
j=1

xn(j))− Gn(t)(xn(i),
1

kn

kn∑
j=1

fn(j))

)
1Ac

∣∣∣∣∣ .
where 1A is the indicator function of A. When 1A = 1, we know that |

∑kn
j=1 x

n(j) −∑kn
j=1 f

n(j)| < δ, which implies that

|Gn(t)(xn(i),
1

kn

kn∑
j=1

xn(j))− Gn(t)(xn(i),
1

kn

kn∑
j=1

fn(j))| ≤ ε

10(M + 1)
.

When 1Ac = 1, by Equation (2), we have

|Gn(t)(xn(i),
1

kn

kn∑
j=1

xn(j))− Gn(t)(xn(i),
1

kn

kn∑
j=1

fn(j))| ≤M.

Therefore, we obtain that for n ≥ N1,∣∣∣∣∣EGn(t)(xn(i),
1

kn

kn∑
j=1

xn(j))− EGn(t)(xn(i),
1

kn

kn∑
j=1

fn(j))

∣∣∣∣∣ ≤ ε

10(M + 1)
+M

ε

10(M + 1)
=

ε

10
.

In particular, we have

EGn(t)(xn(i),
1

kn

kn∑
j=1

fn(j)) ≥ EGn(t)(xn(i),
1

kn

kn∑
j=1

xn(j))− ε

10
.

Similarly, we can prove that there exists N2 such that for n ≥ N2,

EGn(t)(a′,
1

kn
a′ +

1

kn

kn∑
j 6=i

fn(j)) ≤ EGn(t)(a′,
1

kn
a′ +

1

kn

kn∑
j 6=i

xn(j)) +
ε

10
.
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Then, we obtain that for any n ≥ max{N1, N2},

EGn(t)(xn(i),
1

kn

kn∑
j=1

fn(j)) ≥ EGn(t)(a′,
1

kn
a′ +

1

kn

kn∑
j 6=i

fn(j))− ε

5
,

which implies that

Gn(t)(fn(i),
1

kn

kn∑
j=1

fn(j)) ≥ Gn(t)(a′,
1

kn
a′ +

1

kn

kn∑
j 6=i

fn(j))− ε

5
,

By the continuity of G(t), there exists N3 such that for n ≥ N3, G(t)(f(t),
∫
T
f dµ) >

G(t)(f̃n(t),
∫
T
f̃n dµ)− (ε/4) and G(t)(a′, 1

kn
a′ + 1

kn

∑kn
j 6=i f

n(j)) > G(t)(a′,
∫
T
f dµ)− (ε/5).

Since {Gn(t)} → G(t) in sup norm, there exists N4 such that for n ≥ N4, |G(t)(z) −

Gn(t)(z)| < ε/5 for every z ∈ E×S. This means G(t)(f̃n(t),
∫
T
f̃ndµ) > Gn(t)(f̃n(t),

∫
T
f̃ndµ)−

(ε/5) and Gn(t)(a′, 1
kn
a′ + 1

kn

∑kn
j 6=i f

n(j)) > G(t)(a′, 1
kn
a′ + 1

kn

∑kn
j 6=i f

n(j))− (ε/5) .

By combining these inequalities together, we can obtain that for any n ≥ max{N1, N2, N3, N4},

G(t)
(
f(t),

∫
T
f dµ

)
> G(t)

(
f̃n(t),

∫
T
f̃n dµ

)
− ε

5

> Gn(t)
(
f̃n(t),

∫
T
f̃n dµ

)
− 2ε

5

≥ Gn(t)

(
a′,

1

kn
a′ +

1

kn

kn∑
j 6=i

fn(j)

)
− 3ε

5

> G(t)

(
a′,

1

kn
a′ +

1

kn

kn∑
j 6=i

fn(j)

)
− 4ε

5

> G(t)
(
a′,
∫
T
f dµ

)
− ε.

By letting ε → 0, we get G(t)(f(t),
∫
T
f dµ) ≥ G(t)(a′,

∫
T
f dµ). Since this is true for every

a′ ∈ E, f is a Nash equilibrium of G.

B Approximate Equilibria

In light of the examples in Section 3, it is natural to ask whether approximate equilibria

exist in economies and games. In general, the answer is no, as shown by Examples 5 and
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6 in Appendix B.1. After presenting the examples, Propositions 1 and 2 in Appendix B.2

provide sufficient conditions for the existence of approximate equilibria. The proofs of these

propositions are given in Appendix B.3.3 and Appendix B.3.4 respectively.

B.1 Nonexistence of approximate equilibria

Definition 7 Let E = (u, ω) be an economy on an atomless, finitely additive agent space

(T, T , µ) and ε > 0. (p, f) is an ε-competitive equilibrium of E if p ∈ RL
+ \{0}, f is a feasible

allocation, f(t) ∈ Bt(p) for all t and there exists Tε ∈ T such that: (a) µ(Tε) ≤ ε and (b) for

all t ∈ T cε , ut(f(t)) ≥ ut(y)− ε for any y ∈ Bt(p).

The next example shows that an ε-competitive equilibrium may not exist. Given that a

competitive equilibrium exists in finite-agent economies with continuous, convex and strongly

monotone preferences as in Arrow and Debreu (1954), such a nonexistence result is quite

surprising.

Example 5 Fix θ ∈ [1/2, 2/3). The economy E on the atomless, finitely addditive agent

space (N,P(N), µ) is defined as follows. For each t ∈ N,

ut(x1, x2) = et

[
t+ 1

t
x

t
t+ 1
1 + x2

]
, ωt = (θ, θ).

Claim 1 For 0 < ε < 1/3, the economy E has no ε-competitive equilibrium.

Definition 8 Let G be a game on an atomless, finitely additive player space (T, T , µ), and

ε > 0. A strategy profile g : T −→ S is a mixed strategy ε-Nash equilibrium of G if there

exists Tε ∈ T such that µ(Tε) ≤ ε and for all t ∈ T cε , G(t)(g(t),
∫
T
g dµ) ≥ G(t)(a,

∫
T
g dµ)− ε

for all a ∈ E. If in addition, g takes values in E, then it is a pure strategy ε-Nash equilibrium.

An ε-Nash equilibrium in mixed strategies may not exist, as is shown in the next example.

This is surprising, given that mixed strategy equilibria exist in the finite-player setting as in

Nash (1950).
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Example 6 The game G is on the atomless, finitely additive player space (N,P(N), µ) with

A = {0, 1} and K = [0, 1]. For each player t ∈ N, the payoff function is G(t)(0, x) = 0 and

G(t)(1, x) =


1− 2tx+ 2t−1 if − 1 ≤ 1− 2tx+ 2t−1 ≤ 1

1 if 1− 2tx+ 2t−1 > 1

−1 if 1− 2tx+ 2t−1 < −1.

Claim 2 For 0 < ε ≤ 1/4, the game G has no ε-Nash equilibrium in mixed strategies.

Claims 1 and 2 will be proved in Appendix B.3.1 and Appendix B.3.2 respectively.

B.2 Existence of approximate equilibria under additional assump-

tions

The proposition below shows the existence of an ε-competitive equilibrium in economies

under a tightness assumption.

Definition 9 An economy E on (T, T , µ) is tight if for any ε > 0, there exist T̄ ⊆ T such

that µ(T̄ ) < ε, and E(T \ T̄ ) is a relatively compact subset of U × RL
+.

Proposition 1 Let (T, T , µ) be an atomless, finitely additive agent space and E an economy

on it. If E is tight,29 then it has an ε-competitive equilibrium for every ε > 0.

Remark 2 The existence of an ε-competitive equilibrium for every ε > 0 does not imply that

there is a competitive equilibrium. Consider Example 1, where E(T ) is relatively compact.

So, the economy is tight. By the above proposition, it has an ε-competitive equilibrium

for every ε > 0. However, as has been shown, it does not have a competitive equilibrium.

Explicitly, let p = (1/2, 1/2), and for each t ∈ N, f(t) = ωt = (θ, θ). It can be shown that

(p, f) is an ε-competitive equilibrium for every ε > 0.

29If (T, T , µ) is countably additive, then the economy E is tight automatically. Note that the space C(RL
+)

of real valued, continuous functions on RL
+ with the compact-open topology is a complete separable metr1ic

space. One can check that U is a Borel subset of C(RL
+). The countable additivity of µ implies that the

induced distribution of E on U × RL
+ is tight (see Bogachev (2007, p. 85)), so is the economy E .
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We next explore the issue of existence of ε-Nash equilibria in games. The analogous

concept and result for games are as follows.

Definition 10 A game G on (T, T , µ) is tight if for any ε > 0, there exist T̄ ⊆ T such that

µ(T̄ ) < ε, and G(T\T̄ ) is a relatively compact subset of V .

Proposition 2 Let (T, T , µ) be an atomless, finitely additive player space and G a game on

it. If G is tight,30 then it has a pure strategy ε-Nash equilibrium for every ε > 0.

Remark 3 The existence of an ε-Nash equilibrium for every ε > 0 does not ensure the

existence of a Nash equilibrium. In Example 2, the set of payoff functions is relatively

compact. So, the game is tight. By the above proposition, it has an ε-Nash equilibrium for

every ε > 0. However, as has been shown, it does not have a Nash equilibrium. Explicitly,

f(t) = 0 for all t ∈ N is a pure strategy ε-Nash equilibrium for every ε > 0.

Remark 4 A further aspect of approximate equilibria merits attention. The failure of the

idealized limit property for economies and games was illustrated in Examples 3 and 4. The

idealized limit property requires the limit of equilibria to be an equilibrium. One can weaken

this requirement to an approximate equilibrium in the limit, for every ε > 0. In either case,

the answer continues to be in the negative.

In Example 3, the limit allocation is f(t) = (1, 2θ − 1) for all t ∈ N. This is not even a

feasible allocation of the limit economy E since 1 > θ = ω̄1.

In Example 4, the limit profile is f(t) = 1 for all t ∈ N. Then x =
∫
T
fdµ = 1, G(t)(0, x) =

0, G(t)(1, x) = (1/t)−x ≤ 0 and max{G(t)(0, x),G(t)(1, x)} = 0. Let 0 < ε < 1/2. If f is an

ε-Nash equilibrium then for all t ∈ T cε , G(t)(1, x) ≥ −ε⇔ (1/t) + ε ≥ x, which is impossible.

30Similar to Footnote 29, if (T, T , µ) is countably additive, then the game G is tight automatically. Note
that V is a complete separable metric space. The countable additivity of µ implies that the induced distri-
bution of G on V is tight, so is the game G.

32



B.3 The proofs

B.3.1 Proof of Claim 1

Suppose that 0 < ε < 1/3 and (p, f) is an ε-competitive equilibrium. If any of the prices

is zero then the budget set of t ∈ N is unbounded and since the preferences are strongly

monotone, ut(f(t)) ≥ ut(y)− ε cannot hold for every y ∈ Bt(p). So, p� 0. Without loss of

generality, normalize p1 + p2 = 1. For any t ∈ N, the unique solution of maximize ut(x1, x2)

subject to p1x1 + p2x2 = θ is Dt = (Dt1, Dt2), where

Dt1 = min

{
pt+1
2

pt+1
1

,
θ

p1

}
, Dt2 =

θ

p2
− p1Dt1

p2
.

Since (p, f) is an ε-competitive equilibrium, there exists Tε ⊆ N such that µ(Tε) ≤ ε, and for

all t ∈ T cε , ut(f(t)) ≥ ut(Dt)− ε, i.e., ut(Dt)− ut(f(t)) ≤ ε.

For i = 1, 2,
∫
T cε
fi dµ ≤

∫
N fi dµ =

∫
N ωi dµ = θ. Let Ti = {t ∈ T cε : fi(t) < 3θ/2}. If

µ(Ti) = 0, then fi(t) ≥ 3θ/2 for almost all t ∈ T cε , and since µ(T cε ) > 2/3, f is not a feasible

allocation. So, µ(Ti) > 0 for i = 1, 2. Obviously, both T1 and T2 are infinite sets. We will

examine three possibilities for p2/p1 below.

Case 1: p2/p1 < 1. For all t ∈ N, Dt1 = (p2/p1)
t+1 and Dt2 = (θ/p2) − (p2/p1)

t. Since

p2 < 1/2, and (p2/p1)
t → 0, there exists t0 ∈ N such that for all t ∈ N and t > t0, Dt2 > 3θ/2.

Without loss of generality we suppose that {1, . . . , t0} ⊆ Tε.

Given t ∈ T2 and f(t), let f ∗(t) = (f ∗1 (t), f2(t)) where p1f
∗
1 (t) + p2f2(t) = θ. Since

f(t) ∈ Bt(p), f(t) ≤ f ∗(t) and ut(f(t)) ≤ ut(f
∗(t)). Moreover, f ∗2 (t) = f2(t) < 3θ/2. Choose

λ ∈ (0, 1) so that y(t) = λDt + (1 − λ)f ∗(t) and y2(t) = 3θ/2. Then p1y1(t) + p2y2(t) = θ,

and by the quasi-concavity of ut, ut(y(t)) ≥ ut(f
∗(t)).

For all t ∈ T2,

ut(y(t)) = et

t+ 1

t

(
θ

p1
− 3p2θ

2p1

) t
t+ 1

+
3θ

2

 .
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Since ut(Dt)− ut(f(t)) ≤ ε and ut(f(t)) ≤ ut(y(t)), ut(Dt)− ut(y(t)) ≤ ε. Therefore,

[
t+ 1

t
× pt+1

2

pt+1
1

+
θ

p2
− pt2
pt1

]
−

t+ 1

t

(
θ

p1
− 3p2θ

2p1

) t
t+ 1

+
3θ

2

 ≤ εe−t.

Let t go to infinity in T2. Then (1/p2)−(1/p1)+[3p2/(2p1)]−(3/2) ≤ 0, i.e., (p1−p2)(2−3p2) ≤

0. However, since p2/p1 < 1 and p1 + p2 = 1, (p1 − p2)(2− 3p2) > 0, a contradiction.

Case 2: p2/p1 > 1. There exists t0 ∈ N such that for all t ∈ N and t > t0, Dt1 = θ/p1 and

Dt2 = 0. Since p1 < 1/2, Dt1 > 3θ/2 for t > t0. Without loss of generality we suppose that

{1, . . . , t0} ⊆ Tε.

Given t ∈ T1 and f(t), let f ∗(t) = (f1(t), f
∗
2 (t)) where p1f1(t) + p2f

∗
2 (t) = θ. Since

f(t) ∈ Bt(p), f(t) ≤ f ∗(t) and ut(f(t)) ≤ ut(f
∗(t)). Moreover, f ∗1 (t) = f1(t) < 3θ/2. Choose

λ ∈ (0, 1) so that y(t) = λDt + (1 − λ)f ∗(t) and y1(t) = 3θ/2. Then p1y1(t) + p2y2(t) = θ,

and by the quasi-concavity of ut, ut(y(t)) ≥ ut(f
∗(t)).

For all t ∈ T1,

ut(y(t)) = et

t+ 1

t

(
3θ

2

) t
t+ 1

+
θ

p2
− 3p1θ

2p2

 .
Since ut(Dt)− ut(f(t)) ≤ ε and ut(f(t)) ≤ ut(y(t)), ut(Dt)− ut(y(t)) ≤ ε. Therefore,

t+ 1

t

(
θ

p1

) t
t+ 1 − t+ 1

t

(
3θ

2

) t
t+ 1 − θ

p2
+

3p1θ

2p2
≤ εe−t.

Let t go to infinity in T1. Then (1/p1)−(3/2)−(1/p2)+[3p1/(2p2)] ≤ 0, i.e., (p2−p1)(2−3p1) ≤

0. However, since p2/p1 > 1 and p1 + p2 = 1, (p2 − p1)(2− 3p1) > 0, a contradiction.

Case 3: p2/p1 = 1. For all t ∈ N, Dt1 = 1 and Dt2 = 2θ−1. Since θ < 2/3, Dt1 > 3θ/2 for

all t ∈ N. Given t ∈ T1 and f(t), let f ∗(t) = (f1(t), f
∗
2 (t)) where p1f1(t) + p2f

∗
2 (t) = θ. Since

f(t) ∈ Bt(p), f(t) ≤ f ∗(t) and ut(f(t)) ≤ ut(f
∗(t)). Moreover, f ∗1 (t) = f1(t) < 3θ/2. Choose

λ ∈ (0, 1) so that y(t) = λDt + (1 − λ)f ∗(t) and y1(t) = 3θ/2. Then p1y1(t) + p2y2(t) = θ,

and by the quasi-concavity of ut, ut(y(t)) ≥ ut(f
∗(t)).
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For all t ∈ T1,

ut(y(t)) = et

t+ 1

t

(
3θ

2

) t
t+ 1

+ 2θ − 3θ

2

 .
Since ut(Dt)− ut(f(t)) ≤ ε and ut(f(t)) ≤ ut(y(t)), ut(Dt)− ut(y(t)) ≤ ε. Therefore,

1
t −

t+ 1
t

(
3θ
2

) t
t+ 1 + 3θ

2

e−t
≤ ε.

Notice that if t goes to infinity in T1 then both the numerator and the denominator in the

LHS tend to zero. By L’Hopital’s rule,

lim
t→∞

1
t −

t+ 1
t

(
3θ
2

) t
t+ 1 + 3θ

2

e−t

= lim
t→∞

− 1
t2

+ 1
t2

(
3θ
2

) t
t+ 1 − 1

t(t+ 1)

(
3θ
2

) t
t+ 1 ln 3θ

2

−e−t

= lim
t→∞

1−
(

3θ
2

) t
t+ 1 + t

t+ 1

(
3θ
2

) t
t+ 1 ln 3θ

2

t2e−t
.

The numerator has a positive limit but the denominator tends to zero. So, the above limit

is infinity, a contradiction.

This shows that there is no ε-competitive equilibrium for 0 < ε < 1/3.

B.3.2 Proof of Claim 2

Let 0 < ε ≤ 1/4 and suppose that g from N to [0, 1] is an ε-Nash equilibrium, where g(t) is

the probability that player t assigns to 1. Then there exists Tε ⊆ N such that µ(Tε) ≤ ε, and

for all t ∈ T cε , G(t)(g(t), x) ≥ max{G(t)(0, x),G(t)(1, x)} − ε, where x =
∫
T
g dµ.

If x ≤ 1/2, then for all t ∈ N, 1− 2tx+ 2t−1 ≥ 1 which implies that G(t)(1, x) = 1 > 0 =

G(t)(0, x). Therefore, for all t ∈ T cε , G(t)(g(t), x) ≥ 1− ε, which gives g(t) ≥ 1− ε. Then,

x =
∫
Tε
g dµ+

∫
T cε
g dµ ≥

∫
T cε
g dµ ≥ (1− ε)2 > 1

2
,

35



a contradiction.

If x > 1/2, then there exists t0 ∈ N such that for all t ∈ N and t > t0, 1−2tx+2t−1 < −1.

Without loss of generality we suppose that {1, . . . , t0} ⊆ Tε. For all t ∈ T cε , G(t)(0, x) = 0 >

−1 = G(t)(1, x). Hence, G(t)(g(t), x) ≥ −ε for all t ∈ T cε , which gives g(t) ≤ ε. Therefore,

x =
∫
Tε
g dµ+

∫
T cε
g dµ ≤ µ(Tε) + ε ≤ ε+ ε ≤ 1

2
,

a contradiction.

Thus, there is no ε-Nash equilibrium for 0 < ε ≤ 1/4.

B.3.3 Proof of Proposition 1

Since equilibria exist in finite-agent economies, it is easy to show that a competitive equilib-

rium exists in an economy with an atomless finitely additive agent space if there are finitely

many different utility functions and endowments in the economy.31 We state such a result

as a simple lemma.

Lemma 1 Let (T, T , µ) be an atomless, finitely additive player space and E = (u, ω) an

economy on it. If the range of E is finite, then it has a competitive equilibrium (p, f) such

that p� 0 and the range of f is finite.

Proof Let U = {(u1, ω1), . . . , (um, ωm)} be the range of E and Tk = E−1({(uk, ωk)}), 1 ≤

k ≤ m. Then {T1, . . . , Tm} is a measurable partition of T . Let (A,A, ρ) denote the unit

interval with Lebesgue measure. Consider a measurable partition {A1, . . . , Am} of A such

that for each k, ρ(Ak) = µ(Tk). On each Ak, let H(i) = (uk, ωk). Then H is an economy

on a countably additive measure space. By Aumann (1966) it has a competitive equilibrium

(p, h), such that p � 0. From h, we will construct another competitive allocation g of H

which has a finite range.

For 1 ≤ k ≤ m, let Dk = {h(i) : i ∈ Ak}, and co Dk its convex hull. Then
∫
Ak
h dρ ∈∫

Ak
Dk dρ. By Hildenbrand (1974, p. 62),

∫
Ak
Dk dρ = ρ(Ak)× co Dk. From Carathéodory’s

31Note that the atomless property allows us to remove the usual convexity assumptions on the preferences
in finite-agent economies.
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theorem,
∫
Ak
h dρ = ρ(Ak)

∑L+1
j=1 αkjykj,

∑L+1
j=1 αkj = 1 and ykj ∈ Dk for j = 1, . . . , L + 1.

Decompose Ak into L + 1 subsets {Ak1, . . . , Ak,L+1} such that ρ(Akj) = ρ(Ak)αkj, j =

1, . . . , L + 1, and let g(i) = ykj if i ∈ Akj. Then the range of g is finite,
∫
A
g dρ =

∫
A
h dρ

and (p, g) is a competitive equilibrium of H.

Decompose Tk into {Tk1, . . . , Tk,L+1} such that µ(Tkj) = ρ(Akj) and let f(t) = ykj on Tkj.

Then
∫
T
f dµ =

∫
A
g dρ. It follows that (p, f) is a competitive equilibrium of E , p � 0 and

the range of f is finite. The proof of the lemma is thus completed.

Next we move to the proof of Proposition 1, which is divided into seven parts.

Step 1: (Implications of atomlessness) Fix 0 < ε < 1 and assume without loss of generality

that ε = 1/J for some positive integer J . Let σ = max{ω̄1, . . . , ω̄L} and σ = min{ω̄1, . . . , ω̄L}.

By assumption, σ > 0. Since µ is atomless, we can divide T into 2JL pairwise disjoint sets,

each of measure 1/(2JL). Of these subsets, for each commodity ` there is a subset A` (not

necessarily distinct) such that

µ(A`) =
1

2JL
=

ε

2L
and

∫
A`
ω` dµ ≥ ω̄`

2JL
=
εω̄`
2L

.

Then µ(∪L`=1A`) ≤ ε/2 and for every j = 1, . . . , L,
∫
∪L`=1A`

ωj dµ ≥ εω̄j/(2L) ≥ εσ/(2L) > 0.

Step 2: (Implications of tightness) Since E is tight, there exists a subset T̄ ⊆ T such that

µ(T̄ ) < ε/2 and E(T\T̄ ) is relatively compact. Let A = T̄ ∪ (∪L`=1A`). Then µ(A) < ε and

E(T\A) is relatively compact.

Let
∫
A
ω dµ = (γ1, . . . , γL) and γ = min{γ1, . . . , γL}. Since ∪L`=1A` ⊆ A and for each j,∫

∪L`=1A`
ωj dµ ≥ εσ/(2L), γ ≥ εσ/(2L) > 0.

Because ω(T\A) is relative compact, there is an integer K > 1 such that ‖ωt‖ ≤ K

for every t ∈ T\A. Note that {ut : t ∈ T\A} is relatively compact under the compact-

open topology, so {ut : t ∈ T\A} is also relatively compact under the topology of uniform

convergence on any compact domain [Willard (1970, Theorem 43.7)], which implies that

{ut : t ∈ T\A} is equicontinuous on any compact domain [Willard (1970, Theorem 43.15)].

Let θ = 2KL2σ/(εσ) > 1 and C = {x ∈ RL
+ : ‖x‖ ≤ θ}. Then C is compact. By

equicontinuity, there exists δ > 0 such that if x, x′ ∈ C and ‖x−x′‖ < δ then |ut(x)−ut(x′)| <
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ε/4 for all t ∈ T\A.

Since ω(T\A) is relatively compact and {ut : t ∈ T\A} is relatively compact under the

topology of uniform convergence on C, there exist m disjoint measurable sets T1, . . . , Tm such

that T\A = ∪mk=1Tk, ‖ωt − ωt′‖ < δ/θ for any t, t′ ∈ Tk and |ut(x) − ut′(x)| < ε/4 if x ∈ C.

Since our concern is ε-competitive equilibria, without loss of generality we can assume that

µ(Tk) > 0 for each k. For notational simplicity, denote A by Tm+1. Then µ(Tm+1) < ε and∫
Tm+1

ωj dµ ≥ γ for every j = 1, . . . , L.

Step 3: (A finite characteristics economy) Let ξk =
∫
Tk
ω dµ/µ(Tk), 1 ≤ k ≤ m+ 1. For each

1 ≤ k ≤ m, fix an agent ik ∈ Tk and construct an economy E ′ = (û, η) on T as follows.

ût = uik ηt = ξk if t ∈ Tk, 1 ≤ k ≤ m,

ût(x) =
∑L

`=1 x` ηt = ξm+1 if t ∈ Tm+1.

Since
∫
Tm+1

ω dµ � 0,
∫
T
η dµ � 0. E ′ is an economy with strongly monotone preferences

and finite number of utility functions and endowments. By Lemma 1 it has a competitive

equilibrium (p, h) such that p � 0, h is a simple function, p · h(t) = p · ξk if t ∈ Tk

(1 ≤ k ≤ m+ 1) and
∫
T
h dµ =

∫
T
η dµ =

∫
T
ω dµ.

Step 4: (An upper bound for the price ratios) Let α = max{p1, . . . , pL} and α = min{p1, . . . , pL}.

Below we show that α/α ≤ Lσ/γ ≤ θ/K.

Let P = {` : p` = α} and P = {` : p` = α}. If t ∈ Tm+1 then ût(x) =
∑L

`=1 x`. So t

consumes goods only from P and α
∑

`∈P h`(t) =
∑

`∈P p`h`(t) = p · ξm+1. Integration gives,

α
∑

`∈P
∫
Tm+1

h` dµ =
∫
Tm+1

α
∑

`∈P h` dµ = p ·
∫
Tm+1

ξm+1 dµ = p ·
∫
Tm+1

ω dµ ≥ αγ.

The inequality is due to the fact that
∫
Tm+1

ωj dµ ≥ γ for every j = 1, . . . , L.

Suppose to the contrary that αγ > Lασ. Then
∑

`∈P
∫
Tm+1

h` dµ > Lσ. So, for some

` ∈ P ,
∫
Tm+1

h` dµ > σ. Since the demand for this good exceeds its supply, we obtain a

contradiction. This establishes that α/α ≤ Lσ/γ.

Recall that γ ≥ εσ/(2L). This gives Lσ/γ ≤ 2L2σ/(εσ) = θ/K.

Step 5: (A feasible allocation) First, we will construct another competitive allocation z of E ′

fom the allocation h, by reassigning commodity bundles. Next, we will construct a feasible
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allocation f of the economy E based on the allocation z.

Consider any Tk, 1 ≤ k ≤ m+ 1. If ξk = 0 then let z(t) = h(t) for every t ∈ Tk. Assume

that ξk 6= 0. h is a simple function means, there are nonnegative v1, . . . , vNk and β1, . . . , βNk

such that
∑Nk

j=1 β
j = µ(Tk) and

∑Nk
j=1 β

jvj =
∫
Tk
h dµ.

For any measurable subset D of Tk, let τ(D) =
∫
D
p · ω dµ/p · ξk. Then τ is an atomless

measure on Tk with τ(Tk) = µ(Tk). Now consider the atomless, vector measure τ ∗ = (µ, τ).

Its range is convex; see Armstrong and Prikry (1981), Bhaskara Rao (1984), or Khan and

Rath (2013). Since (µ(Tk), µ(Tk)) belongs to the range, there exist Nk disjoint measurable

sets T 1
k , . . . , T

Nk
k such that, for 1 ≤ j ≤ Nk, τ

∗(T jk ) = (βj, βj), i.e., µ(T jk ) = βj and
∫
T jk
p ·

ωdµ/p·ξk = βj. Let z(t) = vj if t ∈ T jk . Then p·z(t) = p·ξk if t ∈ Tk and
∫
Tk
zdµ =

∫
Tk
hdµ.

It follows that z is a competitive allocation of E ′.

Now we will construct the allocation f . If for some 1 ≤ k ≤ m + 1, ξk = 0, let f(t) = ωt

for t ∈ Tk. If ξk 6= 0 then f(t) = (p · ωt/p · ξk)z(t) for t ∈ Tk. Clearly, p · f(t) = p · ωt for all

t ∈ T . Next we show that
∫
T
f dµ =

∫
T
ω dµ.

Suppose that ξk = 0. Then
∫
Tk
ω dµ = 0 and since f(t) = ωt for t ∈ Tk,

∫
Tk
f dµ = 0.

From 0 = p · ξk = p · z(t) and p� 0, z(t) = 0. Thus,
∫
Tk
f dµ =

∫
Tk
z dµ.

If ξk 6= 0, then for any 1 ≤ j ≤ Nk,∫
T jk

f dµ =

∫
T jk

p · ω
p · ξk

z dµ =
1

p · ξk
vj
∫
T jk

p · ω dµ = βjvj.

Therefore,
∫
Tk
f dµ =

∑Nk
j=1 β

jvj =
∫
Tk
z dµ. This gives

∫
T
f dµ =

∫
T
z dµ =

∫
T
ω dµ.

Step 6: (Some relevant inequalities) (a) Claim: If t ∈ Tk then ‖ωt − ξk‖ ≤ δ/θ and |p · (ωt −

ξk)| ≤ αδ/θ.

These are consequences of the fact that ‖ωt − ωt′‖ < δ/θ if t, t′ ∈ Tk. Fix t ∈ Tk

and let g(t′) = ωt − ωt′ for every t′ ∈ Tk. Since ‖ωt − ωt′‖ < δ/θ, ‖g(t′)‖ ≤ δ/θ, and∫
Tk
‖g‖ ≤ µ(Tk)(δ/θ). Note that ωt − ξk = [1/µ(Tk)]

∫
Tk
g dµ. Therefore, ‖ωt − ξk‖ =

[1/µ(Tk)]‖
∫
Tk
g dµ‖ ≤ [1/µ(Tk)]

∫
Tk
‖g‖ dµ ≤ δ/θ.
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From this,

∣∣p · (ωt − ξk)∣∣ =
∣∣∣∑L

`=1p`
(
ωt` − ξk`

)∣∣∣ ≤∑L
`=1p`

∣∣ωt` − ξk` ∣∣ ≤ α ‖ωt − ξk‖ ≤ α
δ

θ
.

(b) Claim: ‖ξk‖ ≤ K.

‖ξk‖ =
1

µ(Tk)

∑L
`=1

∫
Tk
ω` dµ =

1

µ(Tk)

∫
Tk

(∑L
`=1ω`

)
dµ ≤ 1

µ(Tk)

∫
Tk
K dµ = K.

(c) Claim: Let t ∈ Tk, Bt(p) = {x ∈ RL
+ : p·x ≤ p·ωt} and Bk(p) = {y ∈ RL

+ : p·y ≤ p·ξk}.

If x ∈ Bt(p) then ‖x‖ ≤ (θ/K)‖ωt‖. If y ∈ Bk(p) then ‖y‖ ≤ (θ/K)‖ξk‖. Both Bt(p) and

Bk(p) are subsets of C. Moreover, if ωt 6= 0 then ‖x‖/p · ωt ≤ 1/α and if ξk 6= 0 then

‖y‖/p · ξk ≤ 1/α.

Let x ∈ Bt(p). Then α‖x‖ ≤ α‖ωt‖, i.e., ‖x‖ ≤ (α/α)‖ωt‖ ≤ (θ/K)‖ωt‖. Since ‖ωt‖ ≤ K,

‖x‖ ≤ θ. So, Bt(p) is a subset of C. If ωt 6= 0 then α‖x‖ ≤ p · ωt yields ‖x‖/p · ωt ≤ 1/α.

Since ‖ξk‖ ≤ K, a similar argument applies to y and Bk(p).

(d) Claim: Let t ∈ Tk, ωt 6= 0, ξk 6= 0, p · x ≤ p · ωt and x̂ = (p · ξk/p · ωt)x. Then

‖f(t)− z(t)‖ < δ and ‖x− x̂‖ < δ.

Note that z(t) ∈ Bk(p). So, ‖z(t)‖/p · ξk ≤ 1/α. Since f(t) = (p · ωt/p · ξk)z(t),

‖f(t)− z(t)‖ = |p · (ωt − ξk)| ×
1

p · ξk
‖z(t)‖ ≤ αδ

θ
× 1

α
≤ θ

K
× δ

θ
< δ.

From x ∈ Bt(p), ‖x‖/p · ωt ≤ 1/α. Since x̂ = (p · ξk/p · ωt)x, x̂ ∈ Bk(p).

‖x− x̂‖ = |p · (ωt − ξk)| ×
1

p · ωt
‖x‖ ≤ αδ

θ
× 1

α
≤ θ

K
× δ

θ
< δ.

Step 7: (An ε-competitive equilibrium) We will show that (p, f) is an ε-competitive equilib-

rium of E . We have already shown that p · f(t) = p · ωt for all t and that f is a feasible allo-

cation. Since µ(Tm+1) < ε, it is enough to show that for all t ∈ ∪mk=1Tk, ut(f(t)) ≥ ut(x)− ε

if x ∈ Bt(p).

Let t ∈ Tk, 1 ≤ k ≤ m. Suppose that ξk = 0. Then f(t) = ωt. If x ∈ Bt(p) then

‖x‖ ≤ (θ/K)‖ωt‖. From ‖ωt − ξk‖ ≤ δ/θ, ‖ωt‖ ≤ δ/θ. Thus, ‖x‖ ≤ δ/K < δ. Therefore,
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ut(x) < ut(0) + (ε/4) ≤ ut(ωt) + (ε/4), which gives ut(f(t)) ≥ ut(x)− ε.

Suppose that that t ∈ Tk and ξk 6= 0. If ωt = 0 then p · ωt = 0, Bt(p) = {0}, f(t) = 0 and

there is nothing to prove. Therefore, assume that ωt 6= 0.

Let x ∈ Bt(p) and x̂ = (p · ξk/p · ωt)x. Then each of f(t), z(t), x and x̂ are elements

of C and ‖f(t) − z(t)‖ < δ, ‖x − x̂‖ < δ. In the economy E ′, ût(z(t)) ≥ ût(x̂). Moreover,

|ut(z(t))− ût(z(t))| < ε/4 and |ut(x̂)− ût(x̂)| < ε/4. Therefore,

ut(f(t)) ≥ ut(z(t))− ε

4
≥ ût(z(t))− ε

2
≥ ût(x̂)− ε

2
≥ ut(x̂)− 3ε

4
≥ ut(x)− ε.

This completes the proof.

B.3.4 Proof of Proposition 2

Since equilibria exist in finite-agent games, it is easy to show in the following lemma that

an equilibrium exists in a game with an atomless finitely additive agent space if there are

finitely many different payoff functions in the game. Since the agent space is atomless, we

can obtain a pure strategy Nash equilibrium.32

Lemma 2 Let (T, T , µ) be an atomless, finitely additive player space and G a game on it.

If the range of G is finite, then it has a pure strategy Nash equilibrium.

Proof Let U = {u1, . . . , um} be the range of G and Tk = G−1({uk}), 1 ≤ k ≤ m. Then

{T1, . . . , Tm} is a measurable partition of T . Let (A,A, ρ) denote the unit interval with

Lebesgue measure. Consider a measurable partition {A1, . . . , Am} of A such that for each k,

ρ(Ak) = µ(Tk). If i ∈ Ak, let H(i) = uk. Then H is a game on a countably additive measure

space. By Schmeidler (1973), or Rath (1992), it has a pure strategy Nash equilibrium h.

Let Akj = {i ∈ Ak : h(i) = ej}, 1 ≤ j ≤ L, 1 ≤ k ≤ m. Decompose Tk into {Tk1, . . . , TkL}

such that µ(Tkj) = ρ(Akj) and let f(t) = ej on Tkj. Then
∫
T
f dµ =

∫
A
h dρ. The pure

strategy profile f is a Nash equilibrium of G. This completes the proof of the lemma.

32It is easy to see that mixed strategy equilibria exist for an arbitrary set of players with the whole action
profile as the externality part; see, for example, Ma (1969). However, such a result cannot cover the case we
consider here.
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We are now ready to prove Proposition 2. Fix 0 < ε < 1. Since G is tight, there is a

subset T̄ ⊆ T such that 0 < µ(T̄ ) < ε and G(T\T̄ ) is relatively compact. This ensures

that there are m disjoint measurable sets T1, . . . , Tm such that ∪mk=1Tk = T\T̄ , and for any

k ∈ {1, 2, . . . ,m}, ‖ G(t)− G(t′) ‖ < ε/2 if t, t′ ∈ Tk. Since our concern is ε-Nash equilibria,

without loss of generality we can assume that µ(Tk) > 0 for 1 ≤ k ≤ m. For notational

simplicity, denote T̄ by Tm+1.

For each 1 ≤ k ≤ m + 1, fix a player ik ∈ Tk and construct a game H on T as fol-

lows. If t ∈ Tk then H(t) = G(ik). The range of H is finite. By Lemma 2, it has a pure

strategy Nash equilibrium f . If t ∈ Tk then G(ik)
(
f(t),

∫
T
f dµ

)
= H(t)

(
f(t),

∫
T
f dµ

)
≥

H(t)
(
a,
∫
T
f dµ

)
= G(ik)

(
a,
∫
T
f dµ

)
for any a ∈ E.

We will show that f is an ε-Nash equilibrium of G. Recall that µ(Tm+1) < ε. Fix any

1 ≤ k ≤ m and let t ∈ Tk. Then for any a ∈ E,

G(t)
(
f(t),

∫
T
f dµ

)
≥ G(ik)

(
f(t),

∫
T
f dµ

)
− ε

2

≥ G(ik)
(
a,
∫
T
f dµ

)
− ε

2
≥ G(t)

(
a,
∫
T
f dµ

)
− ε.

This shows that f is a pure strategy ε-Nash equilibrium of G.33

33The existence of approximate pure strategy equilibrium can be straightforwardly extended to the case
when the action space A of a game G is a compact set in RL. One can follow the same proof as above with
minor revisions. Since G(T\T̄ ) is relatively compact, it follows from the Ascoli-Arzelà Theorem (Loeb (2016,
p. 171)) that it is also equicontinuous. There exist a positive real number δ and a finite subset Ē of A such
that for any a ∈ A, the distance from a to Ē is less than δ, and for any a, a′ ∈ A and x in the convex hull
coA of A with ‖a− a′‖ < δ, ‖ G(t)(a, x)− G(t)(a′x) ‖ < ε/2. Define a game H on T with action space Ē by
letting H(t)(a, x) = G(ik)(a, x) for t ∈ Tk, a ∈ Ē and x ∈ coĒ. The same proof as in Lemma 2 indicates that
H has a pure strategy Nash equilibrium f . Then one can check that f is a pure strategy 2ε-Nash equilibrium
of G.
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Darrell Duffie, Nicolae Gârleanu, and Lasse H. Pedersen, Over-the-counter markets, Econo-
metrica 73 (2005), 1815–1847.

Ehsan Ebrahimy and Robert Shimer, Stock-flow matching, Journal of Economic Theory 145
(2010), 1325–1353.

Francis Y. Edgeworth, Mathematical Psychics: An essay on the mathematics to the moral
sciences, Kegan Paul, London, 1881.

Huberto M. Ennis and Todd Keister, Banking panics and policy responses, Journal of Mon-
etary Economics 57 (2010), 404–419.

Mark Feldman and Christian Gilles, An expository note on individual risk without aggregate
uncertainty, Journal of Economic Theory 1 (1985), 26–32.

Faruk Gul and Andrew Postlewaite, Asymptotic efficiency in large exchange economies with
asymmetric information, Econometrica 60 (1992), 1273–1292.

44



Joao Gomes, Leonid Kogan and Lu Zhang, Equilibrium cross section of returns, Journal of
Political Economy, 111 (2003), 693–732.

Peter J. Hammond, Straightforward individual incentive compatibility in large economies,
Review of Economic Studies 46 (1979), 263–282.

Peter J. Hammond, Multilaterally strategy-proof mechanisms in random Aumann-
Hildenbrand macroeconomies, in “Topics in Game Theory and Mathematical Economics:
Essays in Honor of Robert J. Aumann” (M. Wooders ed.), Providence, RI: American
Mathematical Society, 1999, pp. 171–187.

Hua He and Jiang Wang, Differential information and dynamic behavior of stock trading
volume, Review of Financial Studies 8 (1995), 919–972.

Martin F. Hellwig, Utilitarian mechanism design for an excludable public good, Economic
theory 44 (2010), 361–397.

Gregory D. Hess and Athanasios Orphanides, War and Democracy, Journal of Political
Economy, 109 (2001), 776–810.

Werner Hildenbrand, On economies with many agents, Journal of Economic Theory 2 (1970),
161–188.

Werner Hildenbrand, Core and Equilibria of a Large Economy, Princeton Univ. Press, 1974.

M. Ali Khan, Remarks on the core of a large economy, Econometrica 44 (1974), 633–42.

M. Ali Khan and Kali P. Rath, The Shapley-Folkman theorem and the range of a bounded
measure: An elementary and unified treatment, Positivity 17 (2013), 381–394.

M. Ali Khan and Yeneng Sun, Nonatomic games on Loeb spaces, Proceedings of the National
Academy of Sciences of the United States of America 93 (1996), 15518–15521.

M. Ali Khan and Yeneng Sun, Non-cooperative games on hyperfinite Loeb spaces, Journal
of Mathematical Economics 31 (1999), 455–492.

M. Ali Khan and Yeneng Sun, Non-cooperative games with many players, in Handbook of
Game Theory, volume 3 (Roert J. Aumann and Sergiu Hart eds.), Chapter 46, 1761–1808,
North-Holland, Amsterdam, 2002.

Mordecai Kurz and Mukul Majumdar, Efficiency prices in infinite dimensional spaces: a
synthesis, Review of Economic Studies 39 (1972), 147–158.

Peter A. Loeb, Real Analysis, Birkhäuser, Switzerland, 2016.
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