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Abstract

Understanding multi-market interactions and identifying leading markets

in the global financial network is of interest to investors, regulators and pol-

icymakers. To discover the essential dynamic dependencies of digital cur-

rency exchanges, we propose TriSNAR, a three-layer sparse estimator for large-

scale network autoregressive models, which imposes a structure on the lag-,

network/group- and individual-level effects. We determine the asymptotic

properties of the sparse estimator and investigate its finite-sample performance

in extensive simulations. Numerical analysis shows that TriSNAR obtains a

higher accuracy with less computational time per model contestant. We explore

the applicability of TriSNAR on a network of 26 cryptocurrency exchanges with

hourly pricing information. TriSNAR not only provides good out-of-sample

prediction accuracy, but also exactly detects each leading exchange in North

America, Europe and Asia.
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1 Introduction

Advances in technology and globalization have started to reshape the trading and

investment ecosystem. Among other things, this has resulted in an increased cross-

listing of financial products in multiple exchanges, domestic and international, for

raising funds and liquidity. This market fragmentation, along with the modern devel-

opments in the infrastructures of the exchanges, has been accompanied by billions of

orders and executions. When considering each exchange as an individual in the mar-

ket network, it is subject to local price formation with high time resolution to receive

price information from its competing markets. Some exchanges, being recognized

as signalers of dynamic patterns, have become more influential and thus lead future

price movements. It has become essential for a broad community of investors, regula-

tors and policymakers to assess and understand the dynamic effects of multi-market

interactions and information flows in global large-scale financial networks.

The dynamic interactions of a variety of international networks have been investi-

gated in the economic and econometric literature, such as economic exposure networks

(Pesaran et al., 2004), the EU network (Dees et al., 2007), risk networks spanned by

financial firms (Diebold and Yılmaz, 2014; Härdle et al., 2016), exchange rates and

credit risk ratings (Creal et al., 2013), company networks (Rapach et al., 2013), social

networks (Kline and Tamer, 2017; Zhu et al., 2017) and the Euro-zone bank network

(Bonaldi et al., 2015). Gagnon and Karolyi (2010) studied the trading behavior in

multi-markets and the resulting arbitrage opportunities. Gagnon and Karolyi (2013)

found that cross-listing in multi-markets matters for price discovery, whereas Chen

et al. (2013) investigated the particular price discovery in two markets. Halling et al.

(2013) studied cross-listed firms for the similarities of markets that exhibit higher

trading volume. Although there are different underlying kinds, the presence of dom-

inating entities and mutual interactions has led to investigations of the lead-lag time

effect in the spanning of these networks. This has motivated the adoption of Vector

AutoRegressive (VAR) models for describing the network dynamics among multiple

dependent series and facilitating their interpretation, providing valuable information

for inference and helping the accuracy of the predictions (Tsay, 2016).

However, for high dimensions or when several lags are involved, VAR models

quickly run into overparameterization and have difficulties in their convergence. Even

for a moderate number of dimensions, the model structure is often overparametrized.

This further impairs their understanding and interpretation, leading to possible in-
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accurate estimation. A meaningful (interpretable) estimation and inference of large-

scale VAR models is often impossible without imposing some structural assumptions,

Basu and Michailidis (2015). Additionally, empirical evidence and domain knowledge

support the existence of a sparse structure in economic and social networks (though

not for all), (de Paula, 2017). Figure 1 depicts example parameter matrices for a

5-dimensional network described in a VAR(3) framework. It illustrates a dependence

structure with three kinds of sparsity in

� lags, accounting for the time-dependent effect of the entire multi-market network

on all exchanges,

� columns within an active NAR parameter matrix, reflecting the group effect of

one exchange on all others, and

� elements within an active group for the individual effect, namely, the interac-

tions between any two exchanges.

The Figure shows that there is a serial dependence between the system and lags 1

and 3, while lag 2 has no effect on the entire system. Among the two active matrices,

lag 1 is dense with all parameters active, and lag 3 contains partially active groups

in the 1st, 4th and 5th columns, indicating the only active lagged groups that have

effects. The individual sparsity in the last two columns of lag 3, with some null

elements, implies that the two active lagged processes have only a partial influence.

The location and type of sparsity are usually unknown. This promotes the adoption

of regularized estimation for the network models.

Figure 1: NAR specification with p = 3 lags and d = 5 processes. The blue squares
represent active parameters with non-zero magnitude, white squares are those with
null magnitude.

Lag 1 Lag 2 Lag 3

A plethora of estimators has been developed to uncover sparse structures. Tibshi-

rani (1996) proposed the Least Absolute Shrinkage and Selection Operator (LASSO),
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using a soft-thresholding operator for sparse estimation. Other approaches suggest

hard-thresholding functions; see Antoniadis (1997). While a soft-thresholding op-

erator is biased, a hard-thresholding operator is not continuous. Overcoming these

drawbacks, a number of unbiased and continuous regularized estimators have been

proposed, e.g., Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001)

and an adaptive LASSO (Zou, 2006). All these estimators have been derived for re-

gression models. For multivariate dependent data, Song and Bickel (2011) proposed

a two-stage VAR approach, which separately penalizes the lagged parameter matri-

ces, columns and individual parameters. Davis et al. (2016) developed a two-step

approach for Network AutoRegressive (NAR) models to investigate the dynamic in-

terconnection in a large-scale network under sparsity. Both approaches translate to

a hard-thresholding operator. Nicholson et al. (2017) considered a variety of struc-

tured VAR models and constructed soft-thresholding estimators with LASSO and

the sparse-group penalty functions (Simon et al., 2013). Basu et al. (2019) proposed

a lag-one VAR model for reduced rank and parameter matrices with an underlying

structure, e.g., a network structure. Lin and Michailidis (2017) investigated block

VAR models, whereas Skripnikov and Michailidis (2019) combined a group LASSO

and LASSO to jointly estimate several VAR models. Bayesian VAR models have been

widely studied; see, e.g., Ghosh et al. (2019). A VAR model under LASSO estimation

was studied in Medeiros and Mendes (2016).

We propose a 3-layer Sparse estimator for large-scale Network AutoRegressive

models (TriSNAR). The estimation is conducted under the sparsity of the lags, groups

and individuals. We develop an efficient and fast algorithm, sequentially optimizing

the large-scale estimation for each of the three layers. An approximate optimization

algorithm is also provided for the fast convergence of the regularized estimation. We

determine the asymptotic properties of the sparse estimator and show that TriSNAR

possesses the three properties of a good sparse estimator defined in Fan and Li (2001),

namely, unbiasedness, sparsity and continuity. In an extensive simulation experiment,

TriSNAR delivers good accuracy. By identifying the statistically significant lags,

groups and individuals in the network, TriSNAR outperforms in terms of uncovering

the true structure and can enhance the interpretability of the dynamic structure of

the network.

As an illustration, we explore the applicability of TriSNAR to a network of 26

cryptocurrency exchanges with hourly Bitcoin pricing information from 4 July 2018

to 4 July 2019. Powered by blockchain technology, Bitcoin is transacted as a bor-
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derless decentralized digital currency and has grown into an active global virtual

money network with millions of accounts. The transactions occur in cryptocurrency

exchanges all over the globe, where the assets are traded 24 hours, on weekends, and

on holidays. However, there are many unknowns concerning the dynamic structure

of the booming cryptocurrency markets. The choice of Bitcoin as an asset for the

empirical study is motivated by a number of reasons. First, the continuous trading

of Bitcoin (BTC) allows for a comparison of exchanges in different time zones. This

is challenging for traditional exchanges that usually have closing hours. As a result,

equity exchanges in America and Asia are not open at the same time. Second, we

chose exchanges that trade BTC/USD; hence, we consider the same trading pair de-

spite considering exchanges from all over the world. On traditional equity exchanges,

trading usually takes place in the local currency, which would challenge a global com-

parison of a particular asset. Third, BTC is the most widely traded cryptocurrency

against fiat currency, although it also features no concentration of trading volume at

a particular exchange. Consequently, the identification of the leading exchanges is

more challenging and requires a more thorough analysis than a pure judgment based

on trading volume concentration. We find a meaningful and insightful dependence

structure in the global BTC multi-market network. The serial dependence effect on

the entire system exists only in the first two lags. There is a sparse-group effect, with

only three exchanges being identified as leading markets, namely, Kraken in the US,

Bitfinex in the UK, and Cex.io in Hong Kong, and sparse individual effects between

the leading exchanges and all others. In comparison, the alternative estimators sug-

gest a much denser structure for three lags, whereas their AIC is worse. TriSNAR

also has good out-of-sample prediction accuracy.

There are several existing sparse estimators for VAR/NAR models. TriSNAR

differs from them in the following aspects. Davis et al. (2016) and Kock and Cal-

lot (2015) focus on individual effects between two processes. The sparse estimators

neither cover the group effect of one process on the entire network nor the serial de-

pendence effect of the system. Chen et al. (2018) and Nicholson et al. (2017) consider

either two of the three effects but do not cover all the effects. Song and Bickel (2011)

also facilitates the triple sparsity; however, their approach does not have the three

properties of a good estimator.

We present the model framework and provide a detailed description of the penal-

ization operator with its theoretical properties in Section 2. Section 2.2 introduces

the algorithms for TriSNAR, as well as the technique for generating the penalty pa-
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rameters and the method for selecting the best model. In Section 3, we investigate

the finite-sample performance in a simulation study. In Section 4, we illustrate the

performance of the models on real data. Section 5 concludes. The code used in this

paper is available at GitHub.

2 TriSNAR for Large-Scale Network AutoRegres-

sive Models

Let Yt ∈ Rd denote a vector of observations of a network with d-dimensional processes

at time point t ∈ {1, . . . , T}, with the length of the time period T . Assume there are p

parameter matrices Ak with k ∈ {1, . . . , p}, which are of dimension d×d and measure

the serial dependence of the d processes. The Network AutoRegressive (NAR) model

describes the serially linear dependencies between these processes. It is defined as

Yt = A0 +

p∑
k=1

AkYt−k + εt (1)

where A0 = (a1,0, . . . , ad,0)
> is the intercept and εt = (ε1,t, · · · , εd,t)> is a vector that

is assumed to be independently and identically distributed with εt ∼ (0,Σ). We

assume that the model is stationary and ergodic, with all roots of the polynomial

Id −
∑p

k=1AkZ
k lying outside the unit ball.

Our interest is in detecting the dynamic dependence in the network to help us

understand the multi-market interactions. For an insightful interpretation, we as-

sume a sparse network structure. In other words, the parameter matrices Ak for

k = {1, . . . , p} are sparse, where the location and form of the sparsity are not pre-

determined. To perform regularized estimation, we introduce a penalty function

pλ1,λ2,λ3(·) imposed on the lags, groups and individual parameters of Ak and estimate

the model (1) by solving a regularized least squares optimization problem,

min
A

T∑
t=p+1

1

2
||Yt −

p∑
k=1

AkYt−k||2F+

p∑
k=1

pλ1,λ2,λ3(Ak), (2)

where λ1, λ2 and λ3 are tuning parameters for the sparsity. The penalty function,

for a suitable choice of λs, should permit the estimator to have the properties of

unbiasedness, sparsity and continuity and, further, the oracle property.
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2.1 Estimator and Asymptotic Properties

Write Ak;ij for the i, jth entry of the matrix Ak and write ||·||F for the Frobenius

norm, defined by ||Ak||F=
√∑d

i=1

∑d
j=1A

2
k;ij. We extract the diagonal of Ak and

consider the autoregressive parameters separately as the (d + 1)th group, Ad+1;j. In

other words, we describe the autoregressive effects disentangled from the network

effects. We use Ak;j to denote the column (group) j with j = 1, . . . , d within the

parameter matrix Ak, yet without the jth parameter on the diagonal. Hence, Ak;j =

(Ak;1j, . . . , Ak;(j−1)j, Ak;(j+1)j, . . . , Ak;dj)
>. As such, the groups have (d−1) parameters

except for the group of the autoregressive parameters, which has d parameters. We

introduce a scaling parameter dj = (d− 1) for j = 1, . . . , d and dj = d for j = (d+ 1)

to offset the impact of a mismatch between the number of parameters in the columns

(d−1) and the diagonal d and apply it to the regularization parameter λ2 accordingly.

We define the penalty function by

pλ1,λ2,λ3(Ak) =



d2λ1||Ak||F ||Ak||F≤ d2λ1

djλ2||Ak;j||F ||Ak;j||F≤ djλ2 ∧ d2λ1 < ||Ak||F
λ3|Ak;ij| |Ak;ij|≤ λ3 ∧ djλ2 < ||Ak;j||F ∧

d2λ1 < ||Ak||F
2bλ3|Ak;ij |−|Ak;ij |2−λ23

2(b−1) λ3 < |Ak;ij|≤ bλ3 ∧ djλ2 < ||Ak;j||F ∧

d2λ1 < ||Ak||F
λ23(b+1)

2
bλ3 < |Ak;ij| ∧ djλ2 < ||Ak;j||F ∧

d2λ1 < ||Ak||F

. (3)

Note that the first case d2λ1||Ak||F applies to the layer of lags. It is regularized by the

magnitude of all parameters within Ak and scales the regularization parameter λ1 by

the number of parameters, d2. The second case, djλ2||Ak;j||F , regularizes each group

j of Ak. The 3rd to 5th cases build the regularization operator for the individual

parameters first, the soft- and tapering-off threshold, λ3|Ak;ij| and
2bλ3|Ak;ij |−|Ak;ij |2−λ23

2(b−1) ,

and the non-regularized case
λ23(b+1)

2
. Here, we require b > 2.

The penalty function (3) combines the advantages of two hard-thresholding func-

tions and a soft-thresholding and a tapering-off function. Figure 2 shows the perfor-

mance of the penalization for examples of sequences of λ by setting the scaled tuning
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Figure 2: The three plots illustrate the three states of TriSNAR. The first plot shows
the penalization of each k lag Ak, which is penalized with a hard-thresholding func-
tion. When the penalizing value λ1 is reached, the values are unpenalized. The second
penalization function for the group steps is illustrated in the second figure, which is
also a hard-thresholding function. Next, the individual penalization function becomes
active, which corresponds to the form of SCAD for regression models.
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parameters to 2 and b = 3.7. The hard-thresholding functions are applied to the

lagged parameter matrices (Fig. 2a) and the groups (Fig. 2b). The soft-thresholding

and tapering-off functions, similar to the SCAD penalty for regression models, are

used for the individual parameters (Fig. 2c). This function ensures that Ak and

Ak;j are only penalized until the values d2λ1 and djλ2 are reached. This favors the

unbiasedness of the resulting NAR model. This formulation is also grounded in the

rationale that a group inside of a lagged matrix can only be unpenalized when the

entire matrix is not subject to the hard-thresholding parameter λ1.

Applying the three-layer penalty function (3), we obtain the estimator of Ak

according to several cases:

Ak =



0 ||Ak||F≤ d2λ1

0 ||Ak;j||F≤ djλ2 ∧ d2λ1 < ||Ak||F
sgn(Ak;ij)(|Ak;ij|−λ3)+ |Ak;ij|≤ 2λ3 ∧ djλ2 < ||Ak;j||F ∧ d2λ1 < ||Ak||F
(b−1)Ak;ij−sgn(Ak;ij)bλ3

(b−2) 2λ3 < |Ak;ij|≤ bλ3 ∧ djλ2 < ||Ak;j||F ∧ d2λ1 < ||Ak||F
Ak;ij bλ3 < |Ak;ij| ∧ djλ2 < ||Ak;j||F ∧ d2λ1 < ||Ak||F

(4)
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We derive the theoretical properties of the estimator (4). Denote bT = max( ∂p
∂Ak;ij

:

Ak;ij 6= 0). The proofs are given in detail in the Appendix.

Theorem 1 Assume that the assumptions for model (1) hold. If max{ ∂2p
∂A2

k;ij(Ak;ij)
:

Ak;ij 6= 0} → 0, then there exists a local maximizer Â for (2) such that ||Â−A0||F=

O(T−1/2 + bT ).

When the hypotheses of Theorem 1 are fulfilled, the regularization parameters λ1,

λ2, λ3 converge to 0 faster than T−1/2. Hence, there exists a local maximizer of (2),

which converges at speed
√
T .

Next, we show that the estimator possesses the sparsity property and hence is

capable of selecting the model parameters in a sparse system. Denote by CL(·) the

constrained likelihood.

Lemma 1 Assume that the assumptions for model (1) hold. If λ1,T , λ2,T , λ3,T → 0

and
√
TbT →∞ as T →∞, then with probability tending to 1, for any given Ak;d1d1

satisfying ||Ak;d1d1 −Ak;d1d1;0||F= Op(T
−1/2) and any constant Q,

CL(Ak;d1d1 , 0) = max
||Ak;−d1−d1

||F≤QT−1/2

CL(Ak;d1d1 ,Ak;−d1−d1),

hence

P (Ak;−d1−d1 = 0)→ 1.

Finally, we show that the estimator possesses the oracle property, i.e., it chooses

the true model as if it were a theoretical estimator that knows the true model struc-

ture.

We define

F =
[
p
′′

λ1,T ,λ2,T ,λ3,T
(A0

1;11), · · · , p
′′

λ1,T ,λ2,T ,λ3,T
(A0

p;d1d1
)
]

as a pd1 × pd1 symmetric matrix containing the second derivatives of the penalty

function and

G =
[
p
′

λ1,T ,λ2,T ,λ3,T
(A1;11)sgn(A1;11), · · · , p

′

λ1,T ,λ2,T ,λ3,T
(Ap;d1d1)sgn(Ap;d1d1)

]
as a d1 × pd1 matrix containing the first derivatives of the penalty function.
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Theorem 2 Assume that the assumptions for model (1) hold. If λ1,T , λ2,T , λ3,T → 0

and
√
TbT →∞ as T →∞, then with probability tending to 1, the root-T consistent

local maximizer A = [A·;d1d1 , A·;−d1−d1 ] from Theorem 1 must satisfy

1. Sparsity: A·;−d1−d1 = 0

2. Asymptotic normality:

√
T ((A·;d1d1 −A0

·;d1d1)(I(A0
·;d1d1) + F ) +G)

d→ N(0, I(A0
·;d1d1)) (5)

in distribution, where I(A0
·;d1d1) is the Fisher Information knowing that A0

·;−d1−d1 =

0.

2.2 Algorithm

We develop two algorithms to implement the estimation: an active-set algorithm

based on coordinate-wise descent and an approximating algorithm with early termi-

nation for fast solutions. The latter switches from the active-set approach after a given

number of iterations and continues searching for a solution with the FISTA algorithm,

Beck and Teboulle (2009), solely for the active parameters already discovered.

In the following, we describe the algorithms in more detail. The vector Yt without

the jth process is denoted by Yt,−j, and recall that Yt,j represents the jth process.

Define sort(·) as the operator that sorts the variables in decreasing order. We use

an active-set algorithm to sequentially evaluate the three-layer parameters with the

order of lags, groups and individuals. The algorithm is initialized with completely

sparse parameter matrices, meaning that all parameters are set equal to 0. Since we

assume that the parameter matrix is sparse, this can be considered an appropriate

starting point. First, we sort the lags, groups and individual parameters according

to the proportion of variance unexplained by them. The sorting ensures that, the

algorithm optimizes first the parameters that explain more of the variability of the

system. In the algorithm, we iterate over active lags in an outer optimization loop.

We iterate over the active groups in each of the identified active lags in a similar

manner. The active individual elements are identified and optimized only from the

active group sets. In each iteration, we construct the residuals εk, εk;−j and εk;ij,

reflecting the unexplained variance, based on which we optimize the parameters for

the active sets. While iterating, non-active lags, groups and individual parameters
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are removed from further analysis.

The implementations are formulated as Algorithm TriSNAR.lag, Algorithm

TriSNAR.group and Algorithm TriSNAR.individual.

1. TriSNAR.lag is the first outer loop algorithm. It evaluates the tuning parameter

λ1 to identify the lag parameter matrix carrying sufficient information. We

sort the matrices in decreasing order according to the explained variance as

reflected in the residuals εk. In each iteration step (m1), Ak with little or

no explanatory power is forced to be 0. Otherwise, with a sufficiently large

explained contribution to the variance, i.e., εk > d2λ1, we continue to estimate

the lag parameter matrix with Algorithm TriSNAR.group.

2. TriSNAR.group evaluates the groups on the sequence λ2. Similarly, we order

them according to the explained variance, and the algorithm is iterated with

the residual εk;−j. In each iteration step (m2), Ak;j is set to 0 in the case

of little or no explanatory power. Otherwise, if εk;−j > dλ2, we continue the

implementation with Algorithm TriSNAR.individual.

3. TriSNAR.individual is used to optimize the individual parameters inside an

active group. It is a coordinate-wise descent optimization under the sequence

λ3 and with residual εk;ij according to estimator (4). In each iteration step

(m3), the contribution to the variance is evaluated. In case there is little or

no explanatory power, Ak;ij is set to 0. Otherwise, the non-zero parameter is

estimated.

4. The algorithms are repeated with iteration steps m1, m2, m3 until all parameter

matrices have converged.

The implementation depends on the hyperparameters η1, η2, η3, which are user spec-

ified. The parameter b for the estimator of the individual parameters can also be set

as a sequence. However, this part of the estimator corresponds to SCAD; hence, we

follow the recommendation of Fan and Li (2001) and set b = 3.7. The regularization

sequences remain to be selected, i.e., the values of the tuning parameters λ1, λ2, and

λ3. Usually, cross-validation is used to determine the sequence. However, due to

the time dependence in our model, cross-validation is not very suitable. We choose

the tuning parameters using the out-of-sample AIC. This is consistent with Bańbura

et al. (2010), Song and Bickel (2011), Nicholson et al. (2017) and Chen et al. (2018).
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The run time depends on the size of the sequence of tuning parameters λ1, λ2 and

λ3. Naturally, a more granular penalization sequence leads to a longer runtime of

the optimization procedure. In our case, it is a halving sequence approaching 0 for

the individual parameter penalization (λ3) and a diminishing sequence by 1/5 for

the group (λ2) and lag regularization (λ1), also approaching 0. This default setting

provides stable performance in a later simulation study.

For very high dimensions or difficult specifications, we also propose an approxi-

mating algorithm that can find a faster solution but may lead to a local optimizer.

In the approximating algorithm, the described procedure interrupts after a specified

number of iterations (s). At this point, the by then identified lagged matrices and

groups are considered active, and the remaining ones are set to 0. Then, we apply the

FISTA algorithm to the parameters that are considered active. FISTA is not applied

in the active-set algorithm because the convergence takes longer over the active sets.

Coordinate-wise descent, delivering similar parameter estimates, is beneficial because

an easier parameter-updating step improves the speed due to iterating over the sets of

parameters. However, FISTA performs well for the approximating algorithm because

it can optimize faster over all sets at once instead of iterating over them, which im-

proves the estimation time of the parameters. In the numerical analysis, the results

derived with the active-set optimization algorithm are denoted by TriSNARG and the

approximate result by TriSNARA.

3 Simulation

We investigate the finite-sample performance of the proposed TriSNAR estimator with

simulations. We consider various scenarios, ranging from simple cases with only one

active lag to relatively complex cases with mixed lag, group and individual sparsity.

We evaluate the ability to detect sparsity, the accuracy of the parameter estimation

and prediction, as well as the runtime. We compare TriSNAR, derived with the

active-set (TriSNARG) and approximating algorithm (TriSNARA), with a number of

competing models. Two of the models, namely, LASSO and SCAD, only penalize

for the individual parameters, while one other model, ‘tapered LASSO’ (TLASSO),

Nicholson et al. (2014), penalizes for the lag structure by tapering off the effect of the

individual parameter penalization. Consequently, it regularizes the lags and individ-

ual parameters. The estimation is implemented in the BigVAR package, Nicholson

et al. (2019).
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Algorithm 1 : TriSNAR.lag

Input: Data Yt for all t = 1, . . . , T
Output: Adjacency matrix A

1: Initialization A = 0, m1 = 1
2: for k = 1, . . . , p do

3: ε.lagk =
√∑T

t=p+1(Y
>
t−k(Yt −

∑p
l=1\kAlYt−l))2

4: end for
5: order.lag = sort({ε.lagk}pk=1)
6:

7: while vec{A(m1) −A(m1−1)} < η1 and m1 ≤ s do
8: for k ∈ order.lag do
9: m2 = 1

10: εk =
√∑T

t=p+1(Y
>
t−k(Yt −

∑p
l=1\kA

(m2)
l Yt−l))2

11: if εk ≤ d2λ1 then A
(m2)
k = 0

12: else
13: while A

(m2)
k −A

(m2−1)
k < η2 do

14: TriSNAR.group({Yt}Tt=1, A
(m2)
k )

15: m2 = m2 + 1
16: end while
17: end if
18: m1 = m1 + 1
19: end for
20: end while
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Algorithm 2 : TriSNAR.group

Input: Data Yt for all t = 1, . . . , T ; Ak

Output: Adjacency matrix Ak

1: for j = 1, . . . , d do

2: ε.groupj =
√∑T

t=p+1(Y
>
t−k,−j(Yt −

∑p
l=1\kAlYt−l)−j)2

3: end for
4: order.group = sort({ε.groupj}dj=1)
5:

6: for j ∈ order.group do
7: m3 = 1

8: εk;−j =
√∑T

t=p+1(Y
>
t−k,−j(Yt −

∑p
l=1\kA

(m2)
l Yt−l)−j)2

9: if εk;−j ≤ dλ2 then A
(m2)
k;j = 0

10: else
11: while A

(m3)
k;j − A

(m3−1)
k;j < η3 do

12: TriSNAR.individual({Yt}Tt=1, A
(m3)
k;j )

13: m3 = m3 + 1
14: end while
15: end if
16: end for

Algorithm 3 : TriSNAR.individual

Input: Data Yt for all t = 1, . . . , T ; Ak;j
Output: Adjacency matrix Ak;j

1: for i = 1, . . . , d do

2: εk;ij =
√∑T

t=p+1(Y
>
t−k,j(Yt,i −

∑p
l=1\k A

(m2)
l,ij Yt−l,j))

2

3: if |εk;ij|≤ 2λ3 then z = sgn(εk;ij)(|εk;ij|−λ3)+
4: else if 2λ3 < |εk;ij|≤ bλ3 then z =

(b−1)εk;ij−sgn(εk;ij)bλ3
(b−2)

5: else if bλ3 < |εk;ij| then z = εk;ij
6: end if
7: Ak;ij = z/

∑T
t=p+1(Y

>
t−k,jYt−k,j)

8: end for
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In the TriSNARA optimization, we fix the identified lags, groups and parameters

and activate FISTA after m1 = 5 iterations, which provided frequently similar results

in the simulation study. This value may not be sufficient for a different simulation

study setting or a different dataset. With dimensions larger than d = 50, we only

derive the results for the approximating algorithm due to a slow optimization speed

in high dimensions. The code used in this paper as well as files containing the exact

settings required for a replication of the simulation study are available at GitHub.

3.1 Set up

We consider networks with d ∈ {10, 20, 50, 100} time series and lengths of T ∈
{100, 200, 500, 1, 000} data points. As we fix the active parameter matrices up to

p = 3 lags, we need to derive 300, 1, 200, 7, 500 and 30, 000 unknown parameters of

the adjacency matrices Ak, k = 1, · · · , 3. We design 6 model specifications and refer

to each scenario by an abbreviation. We assign the capital letter D for specifications

with a diagonal parameter matrix and the capital letter M for a medium persistent

case containing group- and individual sparsity. A digit postfixed to the abbrevia-

tion indicates the number of active lag(s) in the specification. For example, an NAR

model with the first and third lag being active with medium persistence is referred

to as M1/M3. The details are listed below.

� D1 : The first lag is a diagonal matrix with all diagonal parameters being 0.5.

The other two lags are zero. In other words, there only exists autocorrelation

in the network.

� D2 : Similar specification as D1, except the active parameters appear in lag 2.

The first and third lags are nonactive.

� M1 : The first lag is active, with all diagonal parameters being of magnitude

0.5. There are 4 active columns (1, 3, 7, 10) with alternating values of 0 and

0.15. The companion matrix of this specification has the largest eigenvalue of

0.75, yielding a medium persistence. The simultaneous evaluation of the lag,

group and individual effects are required.

� M2 : Similar to specification M1, except the active parameters occur in lag 2.

� M1/M3 : Two lags are active, namely, the first and third lags. Both have the

diagonal parameters of 0.2. The columns 1, 3, 7, 10 are active with alternating
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values 0 and 0.1. The companion matrix of the specification has the largest

eigenvalue of 0.87, indicating a medium persistence (see Figure 3).

Figure 3: Model specification: M1/M3
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� NS1 : We also consider a non-sparse specification, where only the first lag is

active, yet there is no group and individual sparsity in the active matrix. The

magnitude of the parameter decays exponentially away from the diagonal. It

starts at 0.4 on the diagonal, and the off-diagonal parameters take on the values

resulting from the formula Ai,j = (−1)|i−j|0.4|i−j|+1. In other words, all param-

eters are active; however, those far from the diagonal become quite small.

For specifications featuring only individual effects, e.g., NS1, the classic regulariza-

tions LASSO and SCAD are expected to perform well since both models are designed

for such settings. When group effects are added, e.g., M1 and M2, TriSNAR is ex-

pected to excel since its three-layer design is appropriate, whereas the other models

do not consider group effects. In the complex case of, e.g., M1/M3 with lag, group

and individual effects present, TriSNAR and TLASSO should behave well as both

regularize the lag and individual effects, though TriSNAR has the advantage of also

considering the group effects.

In the data generation, the innovations are assumed to be i.i.d. Gaussian with

ε ∼ N(0, Id). In all, there are 4(d)× 4(T )× 6(specifications) = 96 experiments. For

each experiment, we carried out 100 simulations and computed the average perfor-

mance. Moreover, we split each dataset into a training, validation and testing dataset,

each with length T . We estimated the models for all combinations of λ1, λ2, and λ3-
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sequences on the training dataset. The best performing model was evaluated based

on the validation dataset with AIC. The resulting model was then implemented for

the test sample for its forecasting accuracy.

3.2 Evaluation Criteria

The performance was evaluated in three aspects: pattern, accuracy and speed.

� To evaluate the pattern identification, we computed the False Negative (FN)

and False Positive (FP) rates on the estimated sets. FN refers to active set’s

being falsely identified as null, namely, under-detection or overly sparse. FP

refers to the set’s being wrongly identified as active, namely, overdetection or

overly dense. It is natural that the lower these two measures are, the better

the performance. Given the three-layer sparsity, there are then 6 metrics: FN.l

and FP.l for lags, FN.g and FP.g for groups, and FN.e and FP.e for individual

elements. In the case of perfect detection, namely, all 6 metrics are zero, we

conclude that the true pattern was identified.

� Accuracy is measured using the Mean Absolute Error (MAE). Again, there are

three different metrics. MAE.para refers to the estimation accuracy, computed

based on the difference between the true and estimated parameters. MAE.res

refers to the prediction accuracy, which is calculated based on the residuals

between the true values of the time series and the predicted values based on

the model. In other words, it evaluates in-sample on the training dataset.

MAFE.res refers to the forecast error, an out-of-sample measure based on the

testing dataset. In all the accuracy metrics, a low value indicates good accuracy.

� Time/combination is an indicator to measure the speed. We report the time in

seconds it took on average to derive the model per combination of penalization

sequences.

3.3 Roseplots: Summary of the Results

The Figures 4, 5, 6 and 7 summarize the performance of TriSNAR and competing

estimators along with the 10 measurements in the 96 experiments, separated accord-

ing to model specification. Each of the 4 roseplots shows the performance of the

17



simulation study for a given dimension for all 6 scenarios, all number of observations

and the 10 evaluation criteria. Each roseplot is separated into 6 sections, one for

each scenario. Within each section, 4 subsections are assigned for the number of

observations: T = {100, 200, 500, 1000}. For each of these subsections, 5 columns

of rectangles are provided, named A, B, C, D, E. The naming convention refers to

TriSNARG (A), TriSNARA (B), TLASSO (C), SCAD (D) and LASSO (E).

Figure 4: Roseplot for d = 10

The entire circle has 10 tracks, each of which represents another evaluation crite-

rion. The most outer track is referred to as 1, and the most inner track is referred to

as 10. The 6 most outer tracks are for the False Negative and False Positive criteria:

FN.l (1), FP.l (2), FN.g (3), FP.g (4), FN.e (5), FP.e (6). The FN and FP rates vary

between 0 and 1, whereas the color palette goes from white (0) to red (1). No False

Negatives and no False Positives are the best possible outcomes; hence, the more

white or shallow red the rectangles are, the better. Track 7 reports the MAE.para

with a color palette from white (0) to blue (maximum value of MAE.para). Again,

the lower the value, the better; hence, white or shallow blue rectangles are prefer-

able. The MAE.res is reported via track 8 and the MAFE.res via track 9. The color
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palette goes from white (0) to green (maximum value of MAE.res/MAFE.res). Since

these evaluation criteria reflect the error terms, the smaller the values are, the better.

Thus, white and shallow green is preferable. The most inner track, 10, reports the

runtime per combination of λ values. The color palette ranges from white (0) to black

(maximum value of runtime per comparison). Certainly, a faster runtime of the code

is preferred; hence, white and gray rectangles are better.

Figure 5: Roseplot for d = 20

It can be observed that the rectangles associated with TriSNARG and TriSNARA

with d = {10, 20, 50} for the FN and FP values are always white for D1 and D2.

For d = 100, the rectangles become all white for T ≤ 200. However, all the other

models show mostly dark red rectangles on tracks 2, 4, and 6, which reflect the FP

rates. Hence, the competing estimators overparametrize the models; therefore, they

do not provide the true model. For D1 and a higher number of observations, SCAD

also returned the true model, although only TriSNAR identified the true structure in

both cases and for a small number of observations. For scenarios M1 and M2, overall,

TriSNARG and TriSNARA performed best in terms of uncovering the true structure.

For T = 100, both models provided a too sparse model, while the competing estima-
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Figure 6: Roseplot for d = 50

tors selected mostly the incorrect parameters and the incorrect structure. We observe

that all rectangles of C, D, and E are shaded red, which indicates that incorrect pa-

rameters were chosen, whereas the true parameters were not included in the model.

Hence, the TriSNAR solution is preferable even though the solution was too sparse.

For T ≤ 200, TriSNARG and TriSNARA became continuously better, whereas esti-

mators C, D, and E overparameterized. For M1, M3 and NS1 scenarios, exploring

the underlying structure became more difficult for all involved estimators. It can be

observed that the TriSNAR estimators gave a more accurate estimate, which was

inferred from the observation that the respective rectangles are white or have more

shallow red compared to the competing estimators. TriSNARG and TriSNARA also

overparameterized, however, less intense than the competing estimators.

Considering the MAE.para, track 7, it can be observed that both TriSNAR esti-

mators provided more accurate parameter estimations in most cases. When they did

not outperform, the performance was similar to the other models. This result corre-

sponds with the observation that TriSNARG and TriSNARA provided more accurate
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Figure 7: Roseplot for d = 100

solutions in terms of identifying the underlying model structure.

Tracks 8 and 9 provided the results for MAE.res and MAFE.res. Obviously, for

all models within one subsection, the results were comparable for these evaluation

criteria. This infers that all models provide similar model performance, though, as

was discussed before, models C, D, and E tend to overparameterize the models. In

contrast, TriSNARG and TriSNARA can identify the true model structure more often

while providing the same model performance.

Track 10 compares the runtime per combination of λ sequences. We observe

that the TriSNAR estimators had the fastest runtime, whereas the TLASSO model

(C) frequently had a much longer runtime than the other estimators. SCAD and

LASSO performed comparably in terms of runtime, and they were derived faster

than TLASSO.

The good performance of TriSNAR over all evaluation metrics was possible due to

its properties. With the oracle property, it has the potential to find the true pattern,
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especially with a large sample size. Moreover, TriSNAR is an unbiased estimator,

which allows it to achieve low FN and FP. In summary, TriSNAR outperformed in

the majority of the scenarios and cases, illustrating its applicability to large-scale

networks.

3.4 Results for a Detailed Example

To provide more insights into the performance, we illustrate the average performance

of the estimators, TriSNAR and the alternatives, in an example: the case d = 50

and T = 100 in Table 2. The detailed results of the other specifications are available

in the Appendix. This shows that TriSNAR is superior in most cases, except spec-

ifications M1 and NS1. For the easiest specifications, D1 and D2, where only the

first lag contains active parameters while the algorithm searches in an NAR(3) frame-

work, TriSNARG/A found the true pattern with even a small sample size T = 100,

outperforming the TLASSO, LASSO and SCAD methods. Moving to a more chal-

lenging case with one or two active lags and all kinds of sparsity in the lags, groups

and individuals, M2 and M1/M3, TriSNARG/A outperformed again and was close to

identifying the true pattern, indicated by the low FN and FP. With M1/M3, we ob-

serve that TriSNARG and TriSNARA returned the best performance. From FN.l and

FP.l shown for M2, we see that TriSNARG/A tended to regularize the third lag, while

the other models tended to include the second lag, which was non-active. In specifi-

cation M1, TLASSO outperformed by having the lowest FNs for the lags, groups and

individual parameters, whereas TriSNAR provided better FPs.

It would probably be interesting to compare the performance in specification NS1,

where LASSO or SCAD would be expected to outperform, as only the first lag is

active and dense. It turns out that TLASSO gave the best result. Figure 8 allows

a detailed visual inspection for the D1 case, where we depict the true pattern and

the estimated patterns using different estimators. It can be observed that TriSNAR

returned the true model for each of the 100 simulated datasets, whereas TLASSO

and LASSO strongly overparametrized. In particular, LASSO returned a poor result

by identifying all 3 lags as important instead of only the first lag.
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3.4.1 Comparison of derivation time

Table 1 shows the time the estimation took for each sample size T ∈ {100, 200, 500, 1000}
for TriSNARG. The results are compared with the simulations with d = 10 time se-

ries for 3, 5 and 7 lags in the algorithmic specifications. The computational time

increases when more lags are involved; however, with a higher number of observa-

tions, the computation time mostly decreases. This is particularly true for 5 and 7

lags. One observes that the computational time for those models only involving the

diagonal, D1 and D2, is comparable to models involving network effects of medium

persistence, M1, M2, M1.M3. Interestingly, the estimation time of the models is lower

when the third lag is also active, meaning M1. M3, than for its peers with only the

first or second lag active (M1, M2 ). Compared with the computational time with

the competing models in the simulation study, it can be observed that TriSNARG/A

has a considerably lower computational time for each combination of λ’s than the

competing models; see, e.g., Table 9. The granularity of the λ sequences defines

the performance. The lesser combinations, namely, a less granular grid of λ, reduce

the overall runtime of the models and are therefore crucial for applying any of the

reported methods.

Table 1: Average duration of derivation in seconds for simulations with 100, 200,
500, 1000 observations and for 3, 5, 7 lags for the specifications D1, D2, M1, M1/M3,
M2, NS1. For the sake of brevity only the simulations for 10 time series are shown,
however the results for larger systems give comparable results.

100 200 500 1000

3 5 7 3 5 7 3 5 7 3 5 7

D1 68 317 623 52 145 335 73 142 267 122 391 387

D2 67 255 722 50 121 252 69 159 314 107 211 364

M1 98 275 737 87 209 420 107 219 441 160 307 520

M1/M3 69 240 682 44 113 253 89 165 283 147 282 482

M2 88 275 749 72 172 351 102 224 397 143 300 527

NS1 99 284 777 93 239 506 121 240 410 176 347 627
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Figure 8: Comparison of the modeling performance of TriSNAR, TLASSO and
LASSO for scenario D1 with d = 50 and T = 100. The solution for SCAD was
comparable to LASSO. The blue entries in the matrices represent parameters that
are active in at least one simulated dataset.
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(b) TriSNAR
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(c) TLASSO

Column

R
ow

10 20 30 40 50

50
47

44
41

38
35

32
29

26
23

20
17

14
11

9
7

5
3

1

Column

R
ow

10 20 30 40 50

50
47

44
41

38
35

32
29

26
23

20
17

14
11

9
7

5
3

1

Column

R
ow

10 20 30 40 50

50
47

44
41

38
35

32
29

26
23

20
17

14
11

9
7

5
3

1

Lag 3

(d) LASSO
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4 Application

The introduction in 2009 of Bitcoin as the first cryptocurrency initiated a new era

of digital or virtual currency payment and ignited the Initial Coin Offerings (ICOs)

with a series of new cryptocurrencies hitting the global monetary market. Bitcoin

and other cryptocurrencies offer an easy-to-use, digital alternative to fiat currencies.

Their loosely correlated nature makes cryptocurrencies a potential hedge against risk,

in that these digital currencies can be added to diversified portfolios. With the

establishment of exchanges and strong price gains, more trading interest arose in

2014. The number of exchanges has grown constantly; some went bankrupt (e.g., Mt.

Gox), while at the same time, several exchanges are active in the market.

The market nature of cryptocurrencies, namely, a global phenomenon without

country ties or direct linkage to single economies, has triggered considerable research

interest in the network structure of the cryptocurrency market; see, e.g., Guo et al.

(2019). Chen et al. (2018) consider the connections within the BTC blockchain, and

Giudici and Pagnottoni (2019) investigate the connections between the exchanges.

Among others, these publications are interested in the dynamic dependencies in the

network and leading nodes with an impact on the future movement of the cryptocur-

rencies. These studies have used daily data. Given the system of high-frequency

order submission and execution in modern exchanges, an analysis using higher fre-

quency data can convey more information on the price information flows and market

interactions between the exchanges.

We employ TriSNARG to analyze the time-dependent network between hourly

Bitcoin time series denoted in USD. Under the assumption that investors observe the

price evolution on all the exchanges and incorporate the corresponding information

into their trading decisions, we address the following questions:

- The inter-exchange network between traders on different exchanges is not di-

rectly observable, although respective traders should be able to observe the

price evolution on other exchanges. This raises the question of whether there is

information flow such that traders on certain exchanges influence those on oth-

ers on a regular basis, and thus, certain exchanges essentially serve as leading

network nodes.

- Is time a factor, or, more specifically, do multi-market interactions last for only

one time unit (lag) or are they continuously present over several periods?
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- Does the dynamic span of the price of an exchange have different impacts on ex-

changes in terms of the level of connectivity? For example, does a US exchange

have a different effect on traders in Europe than in Asia?

Among the exchanges, not all allow trading against the USD, e.g., Poloniex and

Binance. We only consider exchanges offering trading for BTC/USD. As such, the

longest continuous period with the largest number of exchanges is from 2018-07-04

until 2019-07-04, covering 26 exchanges. We employ TriSNARG to study the dynamic

connections within the exchange network by splitting the data into training, validation

and testing (out-of-sample) periods. In particular, we estimate TriSNARG on the

training data for the period 2018-07-04 until 2018-12-31 (6 months) and evaluate the

regularization parameters λ1, λ2, λ3 on the validation data for 2019-01-01 until 2019-

03-31 (3 months). We evaluate the out-of-sample forecast accuracy on the testing

data for 2019-04-01 until 2019-07-04 (3 months). To make an easy and interpretable

comparison of the estimated parameters, we adopt a GARCH(1,1) model to scale the

demeaned data to unit variance, where the magnitudes of the parameters become

comparable between exchanges and over time. After data preparation, an ADF test

rejects the H0 of non-stationarity.

A model allowing for sparsity in the lags, columns, and individual parameters has

not yet been used to study the network of BTC exchanges. With the help of TriSNAR,

we studied which exchanges are leaders in the formation of the series of returns. For

this purpose, we used TriSNARG to study whether a time-dependent connection

is present and which exchanges influence the dynamics of the return series of the

exchanges. We follow the rationale that the trading activity on certain exchanges

would have a stronger influence on the price than others. We investigate whether

price changes on certain exchanges influence the return series on other exchanges in

a time-dependent manner.

We illustrate the estimated network structure with chord diagrams (see Figure

9). A chord diagram displays the direction and magnitude of the influence of each

node (Bitcoin exchange) by showing the magnitude by means of the circle and the

destination of the signal by the chord. The wider the space in the circle, the larger

the magnitude and hence the higher the dynamic impact on the network. A chord

diagram does not differentiate between positive and negative influences. The sum of

the absolute values of the parameters (magnitude) is displayed on the circle.
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Figure 9: Chord diagrams of TriSNAR and TLASSO for the Bitcoin exchanges.

(a) TriSNAR with lags 1–3 (b) TLASSO with lags 1–3
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The graphs demonstrate the essential dynamic connectivity in the network spanned

by the Bitcoin exchanges. We found that TriSNARG detected a meaningful and in-

sightful network structure that was not only sparse but also had a clear interpreta-

tion. TriSNARG detected three exchanges – Kraken in America, Cex.io in Asia, and

Bitfinex in Europe – leading network movement in the next hour with a significant

first lag. In the second lag, only Bitfinex (Europe) was influential, and network ef-

fects disappeared in the third lag. The three leading exchanges were located in the

three major time zones1 of financial markets (America, Europe, Asia) and have a high

transaction volume; compare Figure 10. Kraken is one major exchange located in San

Francisco, CA, USA. Bitfinex is based in London, and Cex.io has its headquarters

in Hong Kong, which are also traditional financial centers. Considering the fact that

traders in different time zones have very distinct working hours, one can infer that

each exchange is a leader for the return series movements. It is worth mentioning that

the identified leading exchanges are not always the exchanges with the highest trading

activity (measured in trading volume of the BTC/USD), see Figure 9a. Bitfinex and

Kraken are the top exchanges in their respective continents, while Cex.io features

slightly less trading volume in Asia. Note that the trading volume is of similar size

on several exchanges, which challenges the visual detection of the underlying network

structure. However, TriSNAR detected the leading exchanges from the exchanges

with reasonably high trading volume.

In contrast, the TLASSO method from the BigVAR package showed a rather

dense structure, where all three lags were active, with vanishing magnitude on the

parameters, yet all exchanges were connected to the others. Considering the indi-

vidual parameters, we observed that TriSNAR assigned a greater magnitude to the

selected parameters, whereas many parameters of TLASSO were very close to null. In

particular, TriSNAR assigned a combined magnitude of roughly 3.3 to all parameters

of Cex.io in the first lag, whereas most individual parameters were greater than 0.1

in magnitude. TLASSO, however, assigned only 1.5 of the combined magnitude, and

most parameters were close to null. This observation was even more pronounced for,

e.g., Lykke. TriSNAR estimated it as null, whereas TLASSO’ considered it active

with a combined magnitude of roughly 0.45 and most parameters were very close to

null. Additionally, itBit and Bitstamp could be considered strong, with others fol-

lowing close in terms of magnitude and connectivity. In other words, not only a small

1With the term ‘three major time zones’, we refer to the fact that the time differences within
America, Europe and Asia are substantially smaller than those between them. Therefore, the busi-
ness hours within the ‘major time zones’ are aligned, whereas substantial differences are apparent
between them.
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number of exchanges have a network effect. This unclear structure makes the goal

of identifying the leading exchanges a challenge. SCAD and LASSO did not discover

network effects and hence produced a structure similar to that found by TLASSO.

We omit their chord diagrams and only show those of TLASSO as illustrations.

Table 3 summarizes the results for a maximum of three lags, where TriSNARG

was the sparsest model in terms of the numbers of lags and parameters selected. Al-

though considerably sparser, the MAE.res of TriSNAR was approximately the same

as for SCAD or LASSO, and in terms of MAFE.res, all models achieved similar accu-

racy. This suggests that LASSO, SCAD and TLASSO overparametrized the model

since similar results could be achieved with much fewer parameters, as illustrated by

TriSNARG. Similar to the simulation study, we evaluated the best model with AIC.

In this respect, TriSNAR performed considerably better due to the sparser model

structure. Moreover, we observed the spread of the identified parameters over the

parameter matrices. All of the methods allocated the most active parameters to the

first lag. They identified considerably fewer parameters in lag 3, though only TriS-

NAR set lag 3 to null. The outperformance of TriSNAR was balanced across the three

continents, though with better accuracy in Asia and Europe. In summary, TriSNARG

deepened our understanding and improved the interpretability of the global network

between the exchanges while giving a comparable forecasting accuracy.

Table 3: Comparison of TriSNARG, SCAD, LASSO and TLASSO. The best model
was chosen based on the observations from the validation period and evaluated in
terms of the AIC. MAE.res is measured on the observations in the estimation period
and MAFE.res is derived from the out-of-sample period. We also show the number of
parameters in each adjacency matrix individually, as well as the MAFE.res for each
of the three continents in the dataset.

#Parameters MAFE.res

Lag 1 Lag 2 Lag 3 America Asia Europe MAE.res AIC
TriSNAR 76 42 0 0.652 0.523 0.568 0.483 -50,467
SCAD 145 76 43 0.652 0.527 0.573 0.486 -48,945
LASSO 232 149 120 0.651 0.521 0.568 0.481 -48,406
TLASSO 584 460 304 0.649 0.529 0.566 0.491 -45,802
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Figure 10: Hourly log trading volume denoted in USD on the 26 exchanges in America,
Asia/Oceania and Europe.
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5 Conclusion

In this study, we introduced a three-layer Sparse estimator for large-scale Network

AutoRegressive models (TriSNAR), which regularized an NAR model for the lags,

groups and individual parameters. TriSNAR was developed to investigate the inter-

actions between markets and identify leading network nodes. TriSNAR has the three

properties of a good estimator: it is unbiased, has the sparsity property and is a con-

tinuous estimator. With an extensive simulation study, we showed that TriSNAR has

higher accuracy in terms of uncovering the true pattern of the system. In addition,

TriSNAR allows an interpretation of the network. For the three-layer structure of

TriSNAR, we developed two algorithms that solve for TriSNAR efficiently. Both the

global and local algorithms have a faster runtime per regularization-sequence combi-

nation than competitors, such as LASSO. We used TriSNAR to study the network

structure by analyzing the market interactions of a set of Bitcoin pricing series from

26 exchanges and by identifying the leading exchanges. Compared to tapered LASSO,

SCAD and LASSO, TriSNAR had the best forecasting (MAFE) and modeling (MAE)

accuracy, as well as the sparsest solution. TriSNAR identified three exchanges, one

each from Europe, Asia, and North America, as important network nodes located
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in important financial places: London, Hong Kong, and San Francisco. TriSNAR’s

properties of being an unbiased and sparse estimator with a continuous optimization

function enabled it to outperform the other contestants in an empirical study. The

three competing methods were not capable of discovering the structure, which high-

lights the advantages of TriSNAR in this model setting: highest accuracy, reasonable

runtime, and the ability to discover the network’s structure.
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I Proof Appendix

In this section we prove the consistency and oracle property of the estimator. We

prove the theorems under the assumptions made for model (1). The proofs follow

Fan and Li (2001), Song and Bickel (2011) and Wang et al. (2007).

In what follows, assume without loss of generality that the true parameter matrix

A0 contains p lag matrices. Each matrix has a submatrix of dimension d1× d1 whose

elements are different from 0 in the upper left corner. The remaining elements are

equal to 0. Let Ak;d1d1 indicate the respective submatrix for all k and Ak;−d1−d1

the remaining elements of the respective matrix. We denote by A·;d1d1 the combined

parameter matrices Ak;d1d1 over all k, and let A·;−d1−d1 denote the respective combined

parameter matrices Ak;−d1−d1 over all k.

We further define OM(·) as big O notation for elementwise convergence within

a matrix and OV (·) as big O notation for elementwise convergence within a vector.

Likewise we define oM(·) and oV (·) as small o notation for matrices and vectors. Let

vec(·) denote the vectorizing operator to convert a matrix to a vector. Further, we

denote the Fisher information matrix by I(·).

I.1 Proof of Theorem 1

Denote by CL(·) the constrained likelihood and by L(·) the likelihood. Further define

b = T−1/2 + bT and U coordinates around A0. For a large constant Q, it holds that

{A0 + bU : ||U ||F≤ Q} is the ball around A0 and we intend to show that a local

maximum with maximizer Â lies in the ball. So we intend to show that on the surface

of the ball, ||U ||F= Q, for any ε > 0,

P{ sup
||U ||F=Q

CL(A0 + bU) < CL(A0)} ≥ 1− ε. (6)

The difference between the two penalized likelihoods CL(A0 + bU) and CL(A0)

can be bounded from above by the likelihood and the penalization on Â only for the

pd21 parameters different from 0. So we use the property pλ1,λ2,λ3(0) = 0. In case no

parameter in A0 is 0, it will be equal, otherwise larger:
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CL(A0 + bU)− CL(A0) ≤ L(A0 + bU)− L(A0) (7)

− T
p∑

k=1

d1∑
i=1

d1∑
j=1

{pλ1,λ2,λ3(Ak;ij;0 + bU k;ij;0)− pλ1,λ2,λ3(Ak;ij;0)}.

Approximating by a Taylor expansion for A0 + bU around A0 gives

L(A0 + bU) = L(A0) + (A0 + bU −A0)L
′
(A0) (8)

+
1

2
L
′′
(A0)(A0 + bU −A0)

>(A0 + bU −A0)

+ o{1

2
L
′′
(A0)(A0 + bU −A0)

>(A0 + bU −A0)}

T

p∑
k=1

d1∑
i,j=1

pλ1,λ2,λ3(Ak;ij;0 + bU k;ij) = T

p∑
k=1

d1∑
i,j=1

pλ1,λ2,λ3(Ak;ij;0) (9)

+ T

p∑
k=1

d1∑
i,j=1

(Ak;ij;0 + bU k;ij −Ak;ij;0)

pλ1,λ2,λ3(Ak;ij;0)
′
sgn(Ak;ij;0)

+ T

p∑
k=1

d1∑
i,j=1

(Ak;ij;0 + bU k;ij −Ak;ij;0)
2

pλ1,λ2,λ3(Ak;ij;0)
′′

+ T

p∑
k=1

d1∑
i,j=1

o(Ak;ij;0 + bU k;ij −Ak;ij;0)
2

pλ1,λ2,λ3(Ak;ij;0)
′′

Hence

L(A0 + bU)− L(A0) = bL
′
(A0)vec(U) +

1

2
b2vec(U )>L

′′
(A0)vec(U) (10)

+
1

2
b2vec(U)>L

′′
(A0)vec(U)o{1}

37



and

T

p∑
k=1

d1∑
i,j=1

pλ1,λ2,λ3(Ak;ij;0 + bU k;ij)− T
p∑

k=1

d1∑
i,j=1

pλ1,λ2,λ3(Ak;ij;0) (11)

= T

p∑
k=1

d1∑
i,j=1

(bU k;ij)pλ1,λ2,λ3(Ak;ij;0)
′
sgn(Ak;ij;0) (12)

+ T

p∑
k=1

d1∑
i,j=1

(bU k;ij)
2pλ1,λ2,λ3(Ak;ij;0)

′′

+ T

p∑
k=1

d1∑
i,j=1

b2U 2
k;ijo(1)2pλ1,λ2,λ3(Ak;ij;0)

′′

Recall that L
′′
(A0) = −TI(A0).

Hence,

CL(A0 + bU)− CL(A0) ≤bL
′
(A0)

>vec(U ) (13)

− 1

2
Tb2vec(U)>I(A0)vec(U)(1 + o(1))

− T
p∑

k=1

d1∑
i,j=1

bpλ1,λ2,λ3(Ak;ij;0)
′
sgn(Ak;ij;0)U k;ij

− T
p∑

k=1

d1∑
i,j=1

(bU k;ij)
2pλ1,λ2,λ3(Ak;ij;0)

′′
(1 + o(1))

Now, T−1/2L(A0)
′
= OV (1). It follows that the first term on the right-hand side is

of order OV (T 1/2b). If A0 is large enough or the penalty on it small, then by writing

out the inner term it goes to 1. The same holds for O(Tb2), hence O(T 1/2b) = O(Tb2).

For a sufficiently large Q, the second term dominates the first term uniformly in

||U ||F= Q. The third and fourth term are bounded by

Tb

p∑
k=1

d1∑
i,j=1

bTU k;ij + Tb2
p∑

k=1

d1∑
i,j=1

U 2
k;ij max(

∂2pλ1,λ2,λ3
∂A2

k;ij

: Ak;ij 6= 0)(1 + o(1)), (14)

and therefore are O(Tb) and O(Tb2) and hence dominated by the second term too

in the case of a large Q. Hence (6) holds. This implies that there exists a local

maximizer Â for which ||Â−A0||F= O(b). This completes the proof of the theorem.
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I.2 Proof of Lemma 1

We carry out the proof by showing that all parameters in Ak;−d1−d1 for all k cannot

be different from 0 since this would be a contradiction. One has

∂CL(Âk)

∂Ak;ij
=
∂L(Âk)

∂Ak;ij
− Tp′λ1,T ,λ2,T ,λ3,T (Âk;ij)sgn(Âk;ij), (15)

hence for a consistent selection of Ak;−d1−d1 all parameters have to be 0. Otherwise

the first derivative of the constrained likelihood would not equal the unconstrained

one, which is 0.

It is sufficient to show that ∂CL(Ak)
∂Ak;ij

6= 0 if and only if Ak;ij 6= 0. Hence we

will show that with probability tending to 1 for T → ∞, for any Ak;d1d1 satisfying

Ak;d1d1 −Ak;d1d1;0 = OM(T−1/2) and for some small εT = QT−1/2 and i, j = 1, . . . , d1,

∂CL(Ak)

∂Ak;ij
< 0 for 0 < Ak;ij < εT (16)

> 0 for − εT < Ak;ij < 0 (17)

By Taylor’s expansion,

∂CL(Âk)

∂Ak;ij
=
∂L(Âk)

∂Ak;ij
− Tp′λ1,T ,λ2,T ,λ3,T (Âk;ij)sgn(Âk;ij) (18)

=
∂L(A0

k)

∂Ak;ij
+

d2∑
l1=1

d2∑
l2=1

∂2L(A0
k)

∂Ak;ij∂Ak;l1l2
(Âk;l1l2 − A0

k;l1l2
) (19)

+

d2∑
l1=1

d2∑
l2=1

d2∑
l3=1

d2∑
l4=1

∂3L(A∗k)

∂Ak;ij∂Ak;l1l2∂Ak;l3l4
× (Âk;l1l2 − A0

k;l1l2
)(Âk;l3l4 − A0

k;l3l4
)

− Tp′λ1,T ,λ2,T ,λ3,T (Âk;ij)sgn(Âk;ij)

with A∗k lying between Âk and A0
k.

Recall that
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T−1
∂L(A0

k)

∂Ak;ij
= O(T−1/2)

T−1
∂2L(A0

k)

∂Ak;ij∂Ak;l1l2
= E

(
∂2L(A0

k)

∂Ak;ij∂Ak;l1l2

)
+ o(1)

The first term is therefore of order O(T 1/2). The second term is also of order

O(T 1/2) because it consists of the Fisher information matrix and o(1), where the

latter is negligible because o goes to 0 faster than O. The third term is obviously

faster at 0 due to the squared OM , meaning it is bounded by OP (T−1/2)2, hence it

goes faster to 0 than the first and second term. It follows that

∂CL(Ak)

∂Ak;ij
= −Tp′λ1,T ,λ2,T ,λ3,T (Ak;ij)sgn(Ak;ij) +O(T 1/2) (20)

The first term dominates, because
√
TbT → ∞. Hence the sign of Ak;ij determines

the sign of ∂CL(Ak)
∂Ak;ij

. Hence the inequalities (16) and (17) hold, which implies that

∂CL(Ak)
∂Ak;ij

can only be 0 if and only if Ak;ij = 0. This completes the proof.

I.3 Proof of Theorem 2

From Lemma 1 there follows 1. It can be easily shown that there exists an Â·;d1d1

in Theorem 1 that is a root-T consistent local maximizer of CL((A·;d1d1 ,0)) that

satisfies the likelihood equations

∂CL(A)

∂Ak;ij

∣∣∣∣
A=[A·;d1d1 ,A·;−d1−d1

]

= 0 for i = 1, · · · , d1; j = 1, · · · , d1 (21)
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Recall that A·;d1d1 is a consistent estimator,

∂L(A)

∂Ak;ij

∣∣∣∣
A=[A·;d1d1 ,A·;−d1−d1

]

− Tp′λ1,T ,λ2,T ,λ3,T (Ak;ij)sgn(Ak;ij) (22)

=
∂L(A0)

∂Ak;ij
+

p∑
l1=1

d1∑
l2=1

d1∑
l3=1

(
∂2L(A0)

∂Ak;ij∂Al1;l2l3
+ oP (1)

)
(Ak;ij − A0

k;ij) (23)

− T
(
p
′

λ1,T ,λ2,T ,λ3,T
(A0

k;ij)sgn(A0
k;ij)

+(p
′′

λ1,T ,λ2,T ,λ3,T
(A0

k;ij) + oP (1))(Ak;ij − A0
k;ij)
)
.

Setting the first derivative equal to 0 and rearranging terms gives

(Ak;ij − A0
k;ij) = −

∂L(A0
)

∂Ak;ij
− Tp′λ1,T ,λ2,T ,λ3,T (A0

k;ij)sgn(A0
k;ij)

H − TK

= −
1
T
∂L(A0

)
∂Ak;ij

− p′λ1,T ,λ2,T ,λ3,T (A0
k;ij)sgn(A0

k;ij)

1
T
H −K

,

whereasH =
∑p

l1=1

∑d1
l2=1

∑d1
l3=1

(
∂2L(A0

)
∂Ak;ij∂Al1;l2l3

+ oP (1)

)
andK = p

′′

λ1,T ,λ2,T ,λ3,T
(A0

k;ij)+

oP (1).

The nominator converges in distribution by the Central Limit Theorem to

1

T

∂L(A0)

∂Ak;ij
− p′λ1,T ,λ2,T ,λ3,T (A0

k;ij)sgn(A0
k;ij)

d→ N(0,
I(A0

·;d1d1)k;ij

T
)−Gk;ij (24)

By Slutsky’s Theorem, the denominator goes to

− 1

T

p∑
l1=1

d1∑
l2=1

d1∑
l3=1

(
∂2L(A0)

∂Ak;ij∂Al1;l2l3
+ oP (1)

)
+ (p

′′

λ1,T ,λ2,T ,λ3,T
(A0

k;ij) + oP (1))→ I(A0
·;d1d1)k;ij + Fk;ij (25)
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Combining the two results and writing this in matrix form gives

(A·;d1d1 −A0
·;d1d1)

d→ N(0,
I(A0

·;d1d1
T

(I(A0
·;d1d1) + F )−2)−G(I(A0

·;d1d1) + F )−1

(A·;d1d1 −A0
·;d1d1) +G(I(A0

·;d1d1) + F )−1
d→ N(0,

I(A0
·;d1d1)

T
(I(A0

·;d1d1) + F )−2)

√
T ((A·;d1d1 −A0

·;d1d1)(I(A0
·;d1d1) + F ) +G)

d→ N(0, I(A0
·;d1d1))

Hence by applying Slutsky’s Theorem and the Central Limit Theorem, we find

√
T ((A·;d1d1 −A0

·;d1d1)(I(A0
·;d1d1) + F ) +G)

d→ N(0, I(A0
·;d1d1)) (26)

This completes the proof.

II Tables Appendix
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